

Engaging Content Engaging People

Syntax in Statistical Machine Translation

Qun Liu 14 July 2015 at IIS Academia Sinica

Overview of Syntax in SMT

www.adaptcentre.ie

日本和美国的关系

Relationship between Japan and the United States

日本外交政策和美国亚太再平衡的关系

Japan's foreign policy and the US Asia-Pacific rebalancing of relations

日本和美国的关系

Relationship between Japan and the United States

日本外交政策和美国亚太再平衡的关系

Japan's foreign policy and the US Asia-Pacific rebalancing of relations

When input sentences become longer, it is more difficult for the Google Translate to capture their syntax structures.

Google Translate - An Example

www.adaptcentre.ie

Aiken, Milam, and Shilpa Balan. "An analysis of Google Translate accuracy." Translation journal 16.2 (2011): 1-3.

Language Paris	\rightarrow	÷
English – French	91	92
English – German	77	86
English – Italian	87	89
English – Japanese	26	49
English – Chinese	17	49

Google Translate - An Example

www.adaptcentre.ie

Aiken, Milam, and Shilpa Balan. "An analysis of Google Translate accuracy." Translation journal 16.2 (2011): 1-3.

Language Paris	\rightarrow	←
English – French	91	92
English – German	77	86
English – Italian	87	89
English – Japanese	26	49
English – Chinese	17	49

Google Translate performs worse for language pairs with bigger difference in syntax structures.

Overview of Syntax in SMT

www.adaptcentre.ie

MT Pyramid

IBM Model 1-5

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19(2):263-311.

IBM Models

Source	Target	Probability
Bushi (布什)	Bush	0.7
	President	0.2
	US	0.1
yu (与)	and	0.6
	with	0.4
juxing (举行)	hold	0.7
	had	0.3
le (了)	hold	0.01

Phrase-based Model

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical Phrase-Based Translation. In Proceedings of the Human Language Technology and North American Association for Computational Linguistics Conference, pages 127-133, Edmonton, Canada, May.

Alignment Template Model

Franz J. Och and Hermann Ney. 2004. The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics, 30(4):417-449.

Source	Target	Probability
Bushi (布什)	Bush	0.5
	president Bush	0.3
	the US president	0.2
Bushi yu (布什与)	Bush and	0.8
	the president and	0.2
yu Shalong (与沙龙)	and Shalong	0.6
	with Shalong	0.4
juxing le huiang (举行了会谈)	hold a meeting	0.7
	had a meeting	0.3

Hierarchical Phrase-based Model

Dependency Syntax-based Model

Source	Target	Probability
juxing le huiang (举行了会谈)	hold a meeting	0.6
	had a meeting	0.3
X huitang (X会谈)	X a meeting	0.8
	X a talk	0.2
juxing le X (举行了X)	hold a X	0.5
	had a X	0.5
Bushi yu Shalong (布什与沙龙)	Bush and Sharon	0.8
Bushi X (布什X)	Bush X	0.7
X yu Y (X与Y)	X and Y	0.9

Advantage:

- Non-linguistic knowledge used
 Language Independent
- High Performance
 - Synchronous CFG

Disadvantage:

- Limitation in long distance dependency
 - Use of Glue Rules for long phrases

Advantage:

- Non-linguistic knowledge used
 Language Independent
- High Performance
 - Synchronous CFG

Disadvantage:

- Limitation in long distance dependency
 - Use of Glue Rules for long phrases

Synchronous CFG

 $S \rightarrow \langle NP \square VP \square, NP \square VP \square \rangle$ $VP \rightarrow \langle V \square NP \square, NP \square V \square \rangle$ $NP \rightarrow \langle i, watashi wa \rangle$ $NP \rightarrow \langle the box, hako wo \rangle$ $V \rightarrow \langle open, akemasu \rangle$

The implementation of decoding algorithm is straightforward – just like a parsing procedure, either CYK or Chart algorithm works

Advantage:

- Non-linguistic knowledge used
 - Language Independent
- High Performance
 - Synchronous CFG

Disadvantage:

Limitation in long distance dependency
 Use of Glue Rules for long phrases

Glue Rules

$S \rightarrow \langle S_{1}X_{2}, S_{1}X_{2} \rangle$ $S \rightarrow \langle X_{1}, X_{1} \rangle$

- Using Glue Rules means sequentially concatenating all the target phrases, which lead to a back-off to phrase based model
- Two cases to use Glue Rules:
 - > No hierarchical rules applicable
 - The span to be covered by the hierarchical rule is longer than a threshold

Glue Rules

$$\begin{split} \mathbf{S} &\to \langle \mathbf{S}_{1} \mathbf{X}_{2}, \mathbf{S}_{1} \mathbf{X}_{2} \rangle \\ & \mathbf{S} &\to \langle \mathbf{X}_{1}, \mathbf{X}_{1} \rangle \end{split}$$

- Using Glue R concatenate a back-off to ph
 Hierarchical Rules failed to capture dependency between words with a distance longer than a threshold
- Two cases to use G
 No hierarchical lies applicable
 The span to be covered by the hierarchical rule is longer than a threshold

Hierarchical Phrase-based Model

Dependency Syntax-based Model

Constituent Syntax-based Modelswww.adaptcentre.ie

Tree-to-Tree

Forest-based

String-to-Tree

Tree-to-String

- Kenji Yamada and Kevin Knight. 2001. A syntax-based statistical machine translation model. In Proceedings of ACL 2001.
- Daniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin Knight. 2006. SPMT: Statistical machine translation with syntactified target language phrases. In Proceedings of EMNLP 2006.
- Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer. 2006.
 Scalable inference and training of context-rich syntactic translation models. In Proceedings of COLING-ACL 2006.

String-to-Tree Model

Source	Target	Probability
juxing le huiang (举行了会谈)	VP(VPD(hold) NP(DT(a) NN(meeting)))	0.6
	VP(VPD(had) NP(DP(a) NN(meeting)))	0.3
	VP(VPD(had) NP(DT(a) NN(talk)))	0.1
x, huitang (x ₁ 会谈)	VP(x ₁ :VPD NP(DT(a) NN(meeting)))	0.8
	VP(x ₁ :VPD NP(DT(a) NN(talk)))	0.2
juxing le x ₁ (举行了x ₁)	VP(VPD(hold) NP(DT(a) x ₁ :NN))	0.5
	VP(VPD(had) NP(DT(a) x ₁ :NN))	0.5
x ₁ yu x ₂ (x ₁ 与x ₂)	NP(x ₁ :NNP CC(and) x ₂ :NNP))	0.9

•

 Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-String Alignment Template for Statistical Machine Translation. In Proceedings of COLING/ACL 2006, pages 609-616, Sydney, Australia, July.

(Meritorious Asian NLP Paper Award)

Huang, Liang, Kevin Knight, and Aravind Joshi. "Statistical syntax-directed translation with extended domain of locality." Proceedings of AMTA. 2006.

www.adaptcentre.ie

Tree-to-String Model

Source	Target	Probability
VPB(VS(juxing) AS(le) NPB(huiang)) (举行了会谈)	hold a meeting	0.6
	have a meeting	0.3
	have a talk	0.1
VPB(VS(juxing) AS(le) x ₁) (举行了x ₁)	hold a x ₁	0.5
	have a x ₁	0.5
VP(PP(P(yu) x ₁ :NPB) x ₂ :VPB) (与 x ₁ x ₂)	x_2 with x_1	0.9
$IP(x_1:NPB VP(x_2:PP x_3:VPB))$	$x_{1} x_{3} x_{2}$	0.7

- Jason Eisner. 2003. Learning non-isomorphic tree
 mappings for machine translation. In Proc. of ACL 2003
- Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li, Chew Lim Tan, and Sheng Li. "A tree sequence alignmentbased tree-to-tree translation model." *ACL-08: HLT* (2008): 559.
- Yang Liu, Yajuan Lü, and Qun Liu. 2009. Improving Tree-to-Tree Translation with Packed Forests. In Proceedings of ACL/IJCNLP 2009, pages 558-566, Singapore, August.

Tree-to-Tree Model

Constituent Syntax-based Modelswww.adaptcentre.ie

Advantage:

- Linguistic knowledge used
 - Long distance dependency

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity
- Computational Complexity
 - Synchronous TSG

Constituent Syntax-based Modelswww.adaptcentre.ie

Advantage:

- Linguistic knowledge used
 - Long distance dependency

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity
- Computational Complexity
 - Synchronous TSG

Ungrammatical Phrases

- Pure tree-based models get very low performance, even lower than phrase-based models
- Various techniques are developed to incorporate ungrammatical phrases into tree-based models, which lead to an significant improvement on tree-based models

Constituent Syntax-based Modelswww.adaptcentre.ie

Advantage:

- Linguistic knowledge used
 - Long distance dependency

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity
- Computational Complexity
 - Synchronous TSG

Syntactic Ambiguity

It is important to choose a correct tree for producing a good translation!

``Bush held a talk with Sharon''

``Bush and Sharon held a talk''

1-best → n-best trees?

Very few variations among the *n*-best trees!

- Mi, Haitao, Liang Huang, and Qun Liu. "Forest-Based Translation." Proceedings of ACL 2008.
- Mi, Haitao, and Liang Huang. "Forest-based translation rule extraction." Proceedings of the EMNLP 2008.

Packed Forest

N-best Trees vs. Forest

www.adaptcentre.ie

Constituent Syntax-based Modelswww.adaptcentre.ie

Advantage:

- Linguistic knowledge used
 - Long distance dependency

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity
- Computational Complexity
 - Synchronous TSG

www.adaptcentre.ie

Synchronous TSG

Synchronous CFG can be regarded as a special case of Synchronous TSG where the trees are limited to have only two layers of nodes

www.adaptcentre.ie

Considering matching a rule starting from the root node

For Synchronous CFG, there is only one possible tree in the source side

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

www.adaptcentre.ie

Considering matching a rule starting from the root node

- The implementation of Synchronous TSG is much more complex than Synchronous CFG, both in space and in time
- Technologies are developed to deal with the rule indexing problem for Synchronous TSG decoder [Zhang et al., ACL-IJCNLP 2009]
- The syntax based decoder implemented in Moses does not support Synchronous TSG model with rules having more than two layers.

Constituent Syntax-based Modelswww.adaptcentre.ie

Advantage:

- Linguistic knowledge used
 - Long distance dependency

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity
- Computational Complexity
 - Synchronous TSG

Is it possible to build a linguistically syntax-based model with the complexity of Synchronous CFG?

Hierarchical Phrase-based Model

Constituent Syntax-based Model

Dependency Syntax-based Model

History

Ding Y. et al. 2003, 2004 Quick C. et al. 2005

Xiong D. et al. 2007

Difficult of Dependency-based SMT

www.adaptcentre.ie

Difficult of Dependency-based SMT

A dependency translation rule:

…世界杯(World Cup)…在(in)…成功(Successfully) 举行(was held)

Problem: Low Coverage, Sparcity

History

Ding Y. et al. 2003, 2004 Quick C. et al. 2005

Xiong D. et al. 2007

 Dependency-Treeletbased Approach

Dependency Treelet:

Any connected subgraph of a dependency tree

Dependency-Treelet-based Rules www.adaptcentre.ie

- The partition of a dependency tree to a set of treelets is too flexible (more flexible than the partition of a constituent tree in a tree-to-string model)
- The reordering is difficult in target side:
 - These are no sequential orders between treelets
 - The translation of a treelet is usually noncontinuous

Our Solution

- One layer subtree (head-dependency)
- Using POS for Smoothing

Jun Xie, Haitao Mi and Qun Liu, A novel dependency-tostring model for statistical machine translation, in the Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP2011), pages 216-226, Edinburgh, Scotland, UK. July 27–31, 2011

Dep-to-String Rule

Smoothing with: Leaf nodes

www.adaptcentre.ie

Smoothing with: Internal nodes

www.adaptcentre.ie

Smoothing with: Leaf & Internal nodewww.adaptcentre.ie

Smoothing with: Head node

www.adaptcentre.ie

Smoothing with: Head & Leaf nodes www.adaptcentre.ie

Smoothing with: Head & Internal nodes^{adaptcentre.ie}

Smoothing with: All nodes

www.adaptcentre.ie

System	Rule #	MT04(%)	MT05(%)
cons2str	30M	34.55	31.94
hiero-re	148M	35.29	33.22
dep2str	56M	35.82+	33.62+

Advantage:

- Linguistic knowledge used
 - Long distance dependency
- Computational Complexity
 - Equivalent to: Synchronous CFG

Disadvantage:

- Ungrammatical phrases
- Syntactic Ambiguity

Dependency-to-String Model implemented as Synchronous CFG

Liangyou Li, Jun Xie, Andy Way, Qun Liu, Transformation and Decomposition for Efficiently Implementing and Improving Dependency-to-String Model In Moses, In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Pages 122-131. Doha, Qatar. 2014.

- Implement Dependency-to-String in a Synchronous CFG which is compatible with Moses chart decoder
 - Open Source Tools: <u>dep2str</u>
- Implement pseudo-forest to support partially matched head-dependency structures

Summary: Syntax-based Models

Summary: Syntax-based Models

Overview of Syntax in SMT

Using syntax information to capture long distance dependency in target side

Using syntax information to capture long distance dependency in target side

• Generative Structural Language Model (Charniak, 2003)

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003. Syntaxbased language models for statistical machine translation. In *Proceedings of MT Summit IX. Intl. Assoc. for Machine Translation*.

- Idea
 - Estimate head n-gram probability
 - Using POS for smoothing
- Disadvantage
 - Only available when the target tree is generated
 - Can only be used in re-ranking rather than decoding
 - Generative model: features are fixed and not tunable

Heng Yu, Haitao Mi, Liang Huang, and Qun Liu. 2014. A Structured Language Model For Incremental Tree-to-String Translation. To be appeared in Proceedings of the 25th International Conference on Computational Linguistics (Coling2014)

- Dependency-based Language Model
- Incremental: can be used in left-to-right decoding
- Discriminative Model:
 - Large number of used-defined features
 - Feature weights tunable

Preliminary work

- Incremental Tree-to-String Decoding Liang Huang and Haitao Mi. 2010. Efficient incremental decoding for tree-to-string translation. In Proceedings of EMNLP, pages 273–283.
- Structured perceptron with inexact search Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. In Proceedings of NAACL 2012, Montreal, Quebec.

Incremental Tree-to-String Decoding Huang 2010

www.adaptcentre.ie

 $[\epsilon \rightarrow <_{s} \circ [P < /_{s}] [IP \rightarrow NPB \circ VP] [VP \rightarrow held \circ NPB with NPB] [NPB \rightarrow talks \circ]$

<s> Bush held talks

Incremental Tree-to-String Decoding Huang 2010

www.adaptcentre.ie

 $[\epsilon \rightarrow <_{s} \circ |P <_{s}] [IP \rightarrow NPB \circ VP] [VP \rightarrow held \circ NPB with NPB] [NPB \rightarrow talks \circ]$

<s> Bush held talks

Left-to-Right vs Top-down or Bottom-up

Online Structural LM for SMT

	stack	2-gram	SLM
	[.IP]	- 6	
р	[.IP][.NP VP]		
p	[. IP][. NP VP][. Bush]		
5	[. IP][. NP VP][Bush.]	Bush	S_1 : Bush
С	[.IP][NP.VP]	Bush	<i>S</i> ₁ :
p	[. IP] [NP. VP] [. held NPB with NPB]	Bush	<i>S</i> ₁ :
s	[.IP][NP.VP][held.NPB with NPB]	Bush held	S ₂ : Bush held
<i>p</i> , <i>s</i>	[.IP][NP.VP][held.NPB with NPB][a meeting.]	a meeting	S_3 : Bush held a meeting
s	[.IP][NP.VP][held NP with.NPB]	meeting with	$-S_4$: Bush held a meeting with
			S'_4 : Bush held a meeting with
p, s	[.IP] [NP. VP] [held NPB with . NPB] [Sharon.]	with Sharon	$-S_5$: Bush held a meeting with Sharon
С	[.IP] [NP. VP] [held NPB with NPB.]	with Sharon	S5
С	[.IP][NP VP.]	with Sharon	S ₅
С	[IP.]	with Sharon	S 5

Experiment Results

System	BLEU	(sec/sen)	
baseline (BL)	21.06	5.7	
BL + reranking	21.23	0.03	
BL + PTB n-gram	21.10	6.3	
BL + Hassan	21.30	8.4	
BL + ours	21.64^{*}	48.0	

Training Corpus:

1.5M sent. pairs

Decoding time:

System	03	04 05		08	
baseline	19.94	22.03	19.92	21.06	
+SLM	21.49*	22.33	20.51^{*}	21.64^{*}	

8 x Baseline

Overview of Syntax in SMT

Candidate 1: It is a guide to action which ensures that the military always obeys the command of the party Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct

Reference 1: It is a guide to action that ensures that the military will forever heed party commands
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the party
Reference 3: It is the practical guide for the army to heed the directions of the party

Question: Given the human translations as references, how to evaluation the machine translation candidates automatically?

Existing MT Evaluation Metrics

- Lexicalized Metrics
 BLEU NIST Rouge WER PER METEOR AMBER
- Syntax-based Metrics
 STM HWCM
- Semantic-based Metrics
 MEANT HMEANT
- Combinational Metrics
 LAYERED DISCOTK

Existing MT Evaluation Metrics

Metrics	知识类型	模型	优点	缺点
基于词汇	词汇	相似度	善于捕捉	不能捕捉有法结构
的方法	MJYL	错误率	词汇或短语	个配油促可经结构
基于句法	句法信自	扣机嵌	一定程度上	机器译文端句法分析
的方法	内公信忌	们以及	捕捉句法信息	正确率不能保证
基于语义	迅业后自	扣加萨	一定程度上	SRL准确率不理想
的方法	后又 信息	们以及	捕捉语义信息	缺乏有效的语义表示方法
集合多种类型	词汇 句法	机器学习	兼顾各类型知识	不适合没有
知识的方法	语义	相似度	性能最好	训练语料的情况

Parsing as Evaluation

- We proposed a novel MT Evaluation Metrics
 based on Dependency Parsing Model
- We use the reference translations as the training corpus to train a parser
- The parser are used to parse the translation candidates
- The score of the parsing model obtained by the translation candidates are regarded as its quality score.

WMT 2015 Metric Shared Tasks

Correlation coefficient	Pearson Correlation Coefficient			Spearman's			
Direction	fr-en	fl-en	de-en	cs-en	ru-en	Average	Average
DPMFcomb	$.995 \pm .006$	$.951 \pm .013$	$.949 \pm .016$	$.992 \pm .004$	$.871 \pm .025$	$.952 \pm .013$	$.879 \pm .053$
RATATOUILLE	$.989 \pm .010$	$.899 \pm .019$	$.942 \pm .018$	$.963 \pm .008$	$.941 \pm .018$	$.947 \pm .014$	$.905 \pm .047$
IDPMIE	.997 ± .005	$.939 \pm .015$	$.929 \pm .019$	$.986 \pm .005$	$.868 \pm .026$	$.944 \pm .014$	$.867 \pm .050$
METEOR-WSD	$.982 \pm .011$	$.944 \pm .014$	$.914 \pm .021$	$.981 \pm .006$	$.857 \pm .026$	$.936 \pm .016$	$.797 \pm .062$
CHRF3	$.979 \pm .012$	$.893 \pm .020$	$.921 \pm .020$	$.969 \pm .007$	$.915 \pm .023$	$.935 \pm .016$	$.834 \pm .068$
BEER_TREEPEL	$.981 \pm .011$	$.957 \pm .013$	$.905 \pm .021$	$.985 \pm .005$	$.846 \pm .027$	$.935 \pm .016$	$.827 \pm .064$
BEER	$.979 \pm .012$	$.952 \pm .013$	$.903 \pm .022$	$.975 \pm .006$	$.848 \pm .027$	$.931 \pm .016$	$.828 \pm .061$
CHRF	$.997 \pm .005$	$.942 \pm .015$	$.884 \pm .024$	$.982 \pm .006$	$.830 \pm .029$	$.927 \pm .016$	$.877 \pm .051$
LEBLEU-OPTIMIZED	$.989 \pm .009$	$.895 \pm .020$	$.856 \pm .025$	$.970 \pm .007$	$.918 \pm .023$	$.925 \pm .017$	$.857 \pm .055$
LeBLEU-default	$.960 \pm .015$	$.895 \pm .020$	$.856 \pm .025$	$.946 \pm .010$	$.912 \pm .022$	$.914 \pm .018$	$.813 \pm .071$
BS	$991 \pm .008$	$904 \pm .019$	$800 \pm .029$	$961 \pm .008$	$569 \pm .042$	$845 \pm .021$	$758 \pm .054$
USAAR-ZWICKEL-METEOR-MEDIAN	n/a	$.934 \pm .016$	$.935 \pm .019$	$.973 \pm .007$	$.891 \pm .024$	$.933 \pm .016$	$.849 \pm .044$
USAAR-ZWICKEL-METEOR-MEAN	n/a	$.945 \pm .014$	$.921 \pm .020$	$.982 \pm .006$	$.866 \pm .026$	$.929 \pm .016$	$.833 \pm .041$
USAAR-ZWICKEL-METEOR-ARIGEO	n/a	$.945 \pm .014$	$.921 \pm .020$	$.982 \pm .006$	$.866 \pm .026$	$.929 \pm .016$	$.833 \pm .041$
USAAR-ZWICKEL-METEOR-RMS	n/a	$.949 \pm .014$	$.895 \pm .023$	$.982 \pm .006$	$.815 \pm .030$	$.910 \pm .018$	$.821 \pm .039$
USAAR-ZWICKEL-COMET-RMS	n/a	$.834 \pm .023$	$.847 \pm .027$	$.869 \pm .014$	$.603 \pm .041$	$.788 \pm .026$	$.665 \pm .069$
USAAR-ZWICKEL-COMET-ARIGEO	n/a	$.805 \pm .025$	$.811 \pm .030$	$.837 \pm .016$	$.626 \pm .040$	$.769 \pm .028$	$.684 \pm .063$
USAAR-ZWICKEL-COMET-MEAN	n/a	$.805 \pm .025$	$.811 \pm .030$	$.837 \pm .016$	$.626 \pm .040$	$.769 \pm .028$	$.684 \pm .063$
USAAR-ZWICKEL-METEOR-HARMONIC	n/a	$.542 \pm .034$	$.553 \pm .046$	$.712 \pm .021$	$.407 \pm .047$	$.554 \pm .037$	$.770 \pm .059$
USAAR-ZWICKEL-COMET-HARMONIC	n/a	$.463 \pm .036$	$.511 \pm .047$	$.614 \pm .024$	$.406 \pm .047$	$.498 \pm .038$	$.596 \pm .068$
USAAR-ZWICKEL-COMET-MEDIAN	n/a	$116 \pm .044$	$.230 \pm .051$	$.644 \pm .025$	$.183 \pm .054$	$.235 \pm .043$	$.209 \pm .092$
PARMESAN	n/a	$219 \pm .043$	$.437 \pm .047$	$.328 \pm .035$	$.105 \pm .055$	$.163 \pm .045$	$.071 \pm .080$
USAAR-ZWICKEL-COSINE2METEOR-MEDIAN	n/a	$236 \pm .042$	$.014 \pm .051$	$.509 \pm .028$	$.102 \pm .055$	$.097 \pm .044$	$.048 \pm .091$
USAAR-ZWICKEL-COSINE2METEOR-MEAN	n/a	$115 \pm .044$	$337 \pm .049$	$.450 \pm .029$	$.318 \pm .051$	$.079 \pm .043$	$.086 \pm .095$
USAAR-ZWICKEL-COSINE2METEOR-ARIGEO	n/a	$115 \pm .044$	$337 \pm .049$	$.450 \pm .029$	$.318 \pm .051$	$.079 \pm .043$	$.086 \pm .095$
USAAR-ZWICKEL-COSINE2METEOR-RMS	n/a	$093 \pm .043$	$286 \pm .052$	$.406 \pm .031$	$.264 \pm .052$	$.073 \pm .045$	$.066 \pm .087$
USAAR-ZWICKEL-COSINE-MEDIAN	n/a	$409 \pm .039$	$502 \pm .046$	$.817 \pm .019$	$.072 \pm .052$	$006 \pm .039$	$082 \pm .092$
USAAR-ZWICKEL-COSINE2METEOR-HARMONIC	n/a	$355 \pm .040$	$117 \pm .052$	$090 \pm .033$	$.280 \pm .053$	$070 \pm .045$	$.099 \pm .092$
USAAR-ZWICKEL-COSINE-RMS	n/a	nan	$.008 \pm .052$	$.912 \pm .013$	nan	nan	$.122 \pm .079$
USAAR-ZWICKEL-COSINE-MEAN	n/a	nan	$048 \pm .052$	$.908 \pm .014$	nan	nan	$.111 \pm .080$
USAAR-ZWICKEL-COSINE-HARMONIC	n/a	nan	$159 \pm .052$	$.900 \pm .014$	nan	nan	$.034 \pm .077$

Table 1: System-level correlations of automatic evaluation metrics and the official WMT human scores when translating into English.

Overview of Syntax in SMT

Conclusion

- Syntax-based Translation Models
 - Constituent Tree-to-String Model
 - Forest-based Translation Approach
 - Dependency-based Model
- Syntax-based Language Model
 - Online Discriminative Structural LM for SMT
- Syntax-based Translation Evaluation Metrics
 - Dependency Parsing as Evaluation for SMT

- Graph-based Translation Model
 - Sequence-based \rightarrow Tree-based \rightarrow Graph-based
 - A natural framework to incorporate various linguistic knowledge
 - (1) n-gram (2) morphology
 - (3) syntax (4) semantic
- Dependency Parsing as Evaluation for SMT
 - Extension to a discriminative model
 - Used as a combination framework

Engaging Content Engaging People

Q&A

Qun Liu, Professor, Dr., PI

ADAPT Centre Dublin City University

Institute of Computing Technology Chinese Academy of Sciences

Email: qliu@computing.dcu.ie