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Abstract: Three statistical parsing models, which are incremental augmentations to the 
conventional PCFG, are presented in this paper. In this sequence of models, wider structural 
context is taken to condition the derivations. We have applied the models to the task of Chinese 
parsing. Results on the Penn Chinese Treebank and another treebank of shorter sentences are both 
reported. The results show that the Labeled Precision and Recall are raised steadily in this 
approach. For the MT97 treebank, precision/recall are raised from 85.58%/85.66% to 
90.72%/90.92%. For the Penn Chinese Treebank, the rise is from 75.71%/70.27% to 
77.16%/77.69%. We also present our efficient parsing algorithm that saves over 70% of active 
edges in comparison with traditional Chart parsers. 

1   Introduction 

 With the emergence of large treebanks, supervised statistical English parsers are achieving 
promising results. Facing the relatively limited size of Chinese treebanks, we have to start from 
non-lexicalised parsers. However, the fact that the phrase structures of Chinese is less distinct than 
English requires us to develop richer parsing models that can take more of the conditions of 
phrasings into account.  

Inspired by our previous work, an improved Chart parsing algorithm “Role Inverse 
algorithm” (Bai and Zhang 2003) that depicts each symbol position in CFG grammar rules as a 
unique role, we started to consider that when a category is playing different roles, the different 
probability distributions of its expanding rules will embody the subtlety of phrasing preferences. 
This thinking led to the definition of three layers of incremental extensions to PCFG in Section 2. 

Corresponding to the extensions at model level, there are also extensions to grammar 
acquisition (extraction) and parameter estimation. These contents will be discussed in Section 3.  

The parsing algorithm is a probabilistic version of the mentioned Role Inverse algorithm. We 
will compare our optimized algorithm with non-optimized ones in terms of number of active edges 
produced while parsing to show the efficiency of our parser ICTPROP.  

In the last section, detailed report of the performance of our parser will be given and 
analyzed. 

2   Parsing Models 

2.1   Current Node Conditioned, Classical PCFG 

The symbol system of PCFG G includes: 

• A set of terminals, Vkw k ...,,1},{ =  

• A set of non-terminals, niN i ...,,1},{ =  



• A start symbol, 1N  

• A set of rules, }{ jiN ζ→ ，( jζ is a sequence of terminals and non-terminals) 

On the probability aspect, PCFG gives the distribution of all the rules with the same LHS. 
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To compute the probability of a parse tree )(tP , we have to make some independence 
assumptions. However, the assumptions of PCFG are too optimistic. It deems that the expansion 
of a node in a parse tree is an event independent of any other conditions except the category of the 
node. So the probability of a parse tree is the multiplication of all the probabilities of individual 
expansions, regardless of any order. Since all the instances of applied rules form a multiset R , 
then:  
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2.2   Current Node, Preceding Node Conditioned, P-PCFG 

The symbol system is the same as PCFG. We assume that the expansion of a node is 
dependent on both the category of this node and that of its parent node, or preceding node. The 
distribution the model gives is: 
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  ( >< ki NN ,  indicates iN can be derived directly from kN ) 

The computation of )(tP  thus becomes:  
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2.3   Current Node, Preceding Node and Relative Order Conditioned, PORD-PCFG 

We further our approach to take the relative order of a node amongst its siblings as another 
condition.  

The distribution in the model is: 

 ordki ,,∀ ∑ =><→
j

kiji ordNNNP 1),,|( ζ  

( >< ordNN ki ,,  indicates iN can be derived directly from kN as its child 

whose order is ord ) 
The formula to calculate )(tP  is:  
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2.4   Preceding Rule Conditioned, PRORD-PCFG 

In this model, we condition the expansion of a node on the dominating rule through which 
this node is derived. PRORD-PCFG conditions expansions on a relatively closed local structural 
context.  

The distribution in the model is: 



 ordri ,,∀ ∑ =><→
j
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  ( >< ordrN i ,,  indicates iN  is at the ord -th position of RHS of rule r ) 

We compute )(tP  as:  
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In figure 1, the expansion of conditioned structural context is demonstrated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   Grammar Extraction & Parameter Estimation 

3.1   Treebank Grammar and Its Extensions 

Extraction of PCFG from a treebank is straightforward. We count the occurrences of rules in 
the bracketed corpus  at first. Then we use maximum likelihood estimation to estimate the 
probabilities, as in (Charniak 96)： 
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Because structural context is introduced in a uniform way, a mapping technique may be 
applied to reduce the conditional events (derivations) to independent ones. The additional 
preparing work is to map all the labels of intermediate nodes in the treebank to “conditioned 
labels” first. In essence, this is actually to systematically split one category into multiple 
subcategories to fit different types of structural context. 

The mapping is only necessary for non-terminal and non-root nodes in the trees. Since in our 
models, the root derives without constraints of any other nodes and the terminals are not capable 
of derivation.  

(1) P-PCFG mapping:  
Append the category label of its parent node to its own as the postfix. 

RHS RHS RHS RHS 

LHS LHS LHS LHS 

ParentOf (LHS) ParentOf (LHS) ParentOf (LHS) 

OrderOf (LHS) ParentRuleOf (LHS) 

(1) (2) (3) (4) 
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(4) )))(()),((),(|( >< rLHSOrderOfrLHSOfParentRulerLHSrP  

 
Figure 1: Incremental Extensions to PCFG 



(2) PORD-PCFG mapping:  
After P-PCFG mapping, append the relative order number as the postfix. 

(3) PRORD-PCFG mapping:  
After PORD-PCFG mapping, append the string of labels of siblings as the postfix.  

Our mapping method (1) is the same as (Johnson 98). But we generalized it to a greater 
extent in the consequent mappings. 

The consequence of mappings is demonstrated in figure 2. 
In the mapped treebanks, the previously conditional derivations are but independent 

derivations of more specific categories. The MLE can still be applied in the same manner as 
before. However, we have to deal with sparse data problem in models 2 to 4. 

3.2   Witten-Bell Backoff Smoothing. 

Mapping only answers the question of how to represent the appearances of conditional rules. 
For the unseen ones, we have to apply some kind of smoothing technique. We choose Witten-Bell 
backoff as the smoothing method, because we want to put more weight on the rules that are in 
terms of relative frequency closely correlated with more detailed history. The backoff is carried 
out in the reverse order of model extension. Details are in (Chen and Goodman 98) 
 

With mapping and smoothing, we can generate different levels of probabilistic grammars, but 
all in the same representation of classical PCFG. The parser may just be a PCFG one. Another 
additional work to do after parsing is to strip off all the postfixes of labels in the parse trees. 

4   Parsing Algorithm 

We adopted Chart parsing algorithm as our framework of parsing algorithm. To effectively 
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Figure 2 Example of label mapping 



deal with the large treebank grammars, two optimizations are applied. One is a categorical 
edge-pruning technique, while the other prunes edges based on prefix probability. 

4.1   Role Inverse Algorithm: an Improved Chart Parsing Algorithm 

Let G be a CFG grammar without null-productions, and number all the rules from 1 to the 

total number, number all the positions in a rule from left to right as the offset to the leftmost 
position. We use yx.  to represent such a role that is the y -th constituent of the x -th rule. The 

functions below will be used frequently: 
 

)(xLength : RHS length of rule x , 

)(xLeft : LHS category of rule x , 
).( yxCat : The category that plays role yx. (a terminal or non-terminal), 

Obviously, categories and roles have a one-to-many mapping. 
 

Definition 1 Role Inverse function ),( tCI  produces the set of possible roles a proposed category 
C  can play when it meets terminal t  to its right as the look-ahead symbol: 
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      (1) 

 
Definition 2 Rule Starting function ),( tCS produces the set of possible rules a predicted category 

C  can expand when a terminal t  is the look-ahead: 

),( tCS = )}1.(()(|{ xCatFIRSTtCxLeftx ∈∧=           (2) 

 
Actually, ),( tCS is a special case of ),( tCI , when y  in (1) is always 0.  
The idea of Role Inverse algorithm is to construct a set of ),( tCI  table and ),( tCS  table to 

filter the roles a category may take. The reduction of proposed roles will be reflected in a Chart as 
reduced edges. An efficient twins-graph algorithm that makes the construction of parsing table 
cost-effective is explained in detail in (Bai and Zhang 2003). 

In Chart paring, an edge is represented as ],,[ βα BAji •→ . If βαBA → is numbered as x , 

and α = y , we can encode it as ].,,[ yxji , which is called role code. ( ]0.,,[ xii  encodes the starting 

rules) 
Role inverse parsing algorithm, in comparison with classical Chart algorithm (Russell and 

Norvig 1995): 
l init  

add edge ]',0,0[ SS •→  ( ]0.0,0,0[ ); 

l repeatedly add edge, until no edge can be added with the following actions 

for edge ],,[ βα BAji •→  ( ].,,[ yxji )， 

Ø pre action: 

if z: γ→B satisfies ])1[,( +∈ jstringBSz ，then add edge ],,[ γ•→Bjj  ( ]0.,,[ zjj ); 

Ø scan action： 

if string ]1[ +j belongs to category B, and ]),2[,(1. +∈+ jstringBIyx  then add edge 

],1,[ βα •→+ BAji  ( ]1.,1,[ ++ yxji ); 



Ø comp action ： 

if there is an edge ],,[ •→ FBkj ， and ]),1[,(1. +∈+ kstringBIyx  then add 

edge ],,[ βα •→ BAki  ( ]1.,,[ +yxki ); 

l if ]',,0[ •→ SSn  ( ]1.0,,0[ n ) appears then a successful parse is produced 

4.2   Prefix Probability Maximization 

The probabilistic version of Role Inverse Algorithm is still a strict left-to-right parsing 
algorithm. Before a new terminal is scanned, all the partial Viterbi parses left to the scan point is 
selected, and the maximum probability of every active edge is also available. Because what we 
want is the global Viterbi parse, any active edge that is impossible to lead to this goal can be 
pruned. The pruning criteria are: 

For all active edges that 
(1) have the same starting point and end at the scan point, 
(2) have the same postfix to be expected, 
(3) have the same category to be reduced to, 
select the one with the maximum probability and prune all the others. 
The reason is these edges have the same behavior in the following process and the one whose 

probability is currently the highest among them will always be the highest in future development. 
So we select it and defeat others as soon as possible.  

4.3   Result with two edge-pruning techniques applied 

In the following chart, the pruning effect of role filtering and prefix filtering is demonstrated. 
The x-axis indicates the length of sentences to be parsed. The y-axis indicates the percent of active 
edges relative to that of a Chart algorithm without the two optimizations. The chart tells us the 
longer the sentence to be parsed, the eminent the pruning effect. On average, our algorithm saves 
over 70% of active edges, which compose the majority of edges. 
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Figure 3 Effect of Edge-Pruning 



5   Results and Conclusions 

We experimented on two Chinese treebanks to test the performance of our extended PCFG 
parser ICTPROP. The first treebank MT97 (Liu 98) is a treebank of short sentences with average 
length of 8 words. We got very satisfying results on this small data set. (See table 2-1) The second 
treebank Penn Chinese Treebank (Xia et al. 2000) has an average sentence length of 30 words and 
presents a much greater challenge to the parser. Unfortunately, the last model PRORD-PCFG is 
not feasible without pruning of rules. However, in the experiments, we didn’t try to prune any 
rules blindly. We replaced PRORD-PCFG with a less rich model that only attaches the labels of 
adjacent brother nodes as postfix during mapping (3) to approximate the ideal model. The result 
on Penn Treebank is not so dramatic as expected. We analyzed the reason and concluded that: 

(1) The sparse data problem is serious without cutting of extremely infrequent rules when 
extending PCFG. We need to treat the rules differently while extending them to 
conditional ones. 

(2) Without lexicalisation, there will be an upper bound of precision/recall. We plan to use 
some kind of words clustering algorithm to group the words automatically first and then 
build a richer model based on the word groups. If successful, we may approximate 
lexicalisation to some extent. 

The following table shows the results in terms of LP (Labelled Precision), LR (Labelled 
Recall), CB (Crossing Brackets), 0CB (percentage of 0CB parses), 1CB (percentage of 1 or 0 CB 
parses), as described in (Manning and Schütze 99) 

 
Table 2-1 MT97 Treebank Result（2400 training, 671 testing） 

 PCFG P-PCFG PORD-PCFG PRORD-PCFG 

LP 85.58 88.88 88.91 90.72 

LR 85.66 89 91.13 90.92 
CBs 0.86 0.53 0.43 0.40 

0CB 58.57 72.43 76.9 78.99 

1CB 76.30 85.4 88.08 88.97 
 

Table 2-2 Penn Chinese Treebank Result (2200 training, 662 testing) 

 PCFG P-PCFG PORD-PCFG PRORD-PCFG* 
LP 75.71 77.76 77.73 77.16 

LR 70.27 73.02 75.3 77.69 

CBs 3.42 2.90 2.79 2.79 
0CB 24.81 31.16 31.56 32.70 

1CB 40.24 49.47 48.1 48.73 
*Approximation 
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