Maximum Rank Correlation Training for Statistical Machine Translation

Daqi Zheng*, Yifan He**, Yang Liu*, Qun Liu* ** *ICT, Chinese Academy of Sciences **CNGL, Dublin City University Originally published at MT Summit XIII 2011

Presented by Qun Liu MONOMT Workshop Attached with AMTA, San Diego US, 1st Nov 2012

Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Introduction

- MERT: Minimal Error Rate Training
 - N-best candidates are given by the decoder for each sentences
 - Tune the parameter λ to make the best candidate (with highest BLEU score) to have the highest model score

イロン スピン メヨン メヨン

Đ.

DQC

イロト イロト イヨト イヨト

횬

DQC

イロン スピン メヨン メヨン

Đ.

DAG

イロン スピン メヨン メヨン

Đ.

DQC

E

イロト イロト イヨト イヨン

DAG

イロン スピン メヨン メヨン

E

DAG

MERT

- Not good for rich features (>20)
- Not stable for local extremums
- Not generalizable across domains

Alternative solution: Min-Risk [Li & Eisner EMNLP2009]

Define the Risk as:

$$R = -\sum_{i} p(c_i) \operatorname{SBLEU}(c_i)$$

while the Posterior Probability can be defined using model score, for example:

 $p(c_i) = \exp(\gamma \cdot score(c)) / \sum_i \exp(\gamma \cdot score(c_i))$

• Tune the parameter λ to minimize the Risk

イロト イロト イヨト イヨト

3

DQC

Alternative solution: MIRA

[Chiang et al. EMNLP2008]

- Select a Positive Set of candidates with high BLEU scores
- Select a Negative Set of candidates with low BLEU score
- Tune the parameter λ to maximize the difference (margin) of the model score between Negative Set and that of Positive Set.

イロト イロト イヨト イヨト

3

DQC

Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Our Motivation: Max Rank Correlation

 We would like to choose the λ which maximize the correlation between the ranking of the candidates according the model scores and that according to the BLEU scores

Motivation

12345678

- For example: 8 candidates
 - BLEU score ranking:
 - Model score ranking with λ_1 18765432
 - Model score ranking with λ_2 2 1 3 4 5 6 7 8
- For MERT, λ_1 will be chosen
- We would like to choose λ_2

Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Maximum Rank Correlation (MRC)

$$\hat{\lambda} = \arg \max_{\lambda} (\sum_{i=1}^{M} w_i \cdot Corr_i(\lambda))$$

$$Corr_i(\lambda) = Corr(\Phi_1^N(\lambda), SBLEU(\mathbf{e}_1^N)))$$
Spearman Rank
$$Correlation \Rightarrow \rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}$$

$$w_i = length(\mathbf{f}_i) / \sum_{i=1}^{M} (length(\mathbf{f}_i))$$

イロト イロト イヨト イヨト

3

DQC

Rank Correlation

イロト イポト イボト イボト

SAC

Combination of MER and MRC

Multi-objective Optimization

- We use multi-objective evolutionary algorithm (MOEA) (Fonseca et al., 1993) for training.
- We choose an effective MOEA tool: NSGA-II in our experiments.

Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Experiment Settings

- Data
 - French-English WMT08 shared translation task
 - Training data : Europarl v3b release
 - Language model : English part of monolingual language model
 - training data
 - Tuning set: dev2006
 - In-domain test sets : test2006, test2007, test2008
 - Out-of-domain test sets : newstest2008, newstest2009, newstest2010
- System
 - Machine Translation: Moses Suite
 - Spearman Rank Correlation Coefficient: goose
 - Multi-Objective Optimization: NSGA-II

Generic Algorithm Settings

- First Generation
 - 10 individuals from MERT training
 - 390 individuals randomly generated
- Evolution
 - 100 generations
 - 400 individuals for each generation

Experiment Process

Reranking

Decoding

人口 とうぼ とうぼう 人口 とう

1

SAC

Baseline

Results

- Best α on development set
- Results via different α on test set
- Improvement of reranking on each MERT tuning run
- Improvement of reranking on different genetic algorithm settings
- Time cost

Result of Best α on Dev Set

ヘロア 人間 アメポア 人間ア

SAC
Results

- Best α on development set
- Results via different α on test set
- Improvement of reranking on each MERT tuning run
- Improvement of reranking on different genetic algorithm settings
- Time cost

Result via Different α

人口 アメロマ 人間 アメロア

2

Sac

Out-of-Domain

D Zheng, Y He, Y Liu, Q Liu ICT@CAS and CNGL@DCU MRC Training for SMT

Result via Different α

SAC

ヘロアス ロマス かん かん

Results

- Best α on development set
- Results via different α on test set
- Improvement of reranking on each MERT tuning run
- Improvement of reranking on different genetic algorithm settings
- Time cost

D Zheng, Y He, Y Liu, Q Liu ICT@CAS and CNGL@DCU MRC Training for SMT

Improvement of Reranking on Each Run

In-Domain

Out-of-Domain

イロア イボア イボア (ボア)

Improvement of Reranking on Each Run

0.3

0.2

BLEU variance

In-Domain

Out-of-Domain

イロア イボア イボア イボア

1

Improvement of Reranking on Each Run

In-Domain

Out-of-Domain

Sac

ヘロア 人間 アイボア 人間ア

Results

- Best α on development set
- Results via different α on test set
- Improvement of reranking on each MERT tuning run
- Improvement of reranking on different genetic algorithm settings
- Time cost

Result Summary

人口マス 雪マス かがく かやく

SAC

D Zheng, Y He, Y Liu, Q Liu ICT@CAS and CNGL@DCU MRC Training for SMT

Results

- Best α on development set
- Results via different α on test set
- Improvement of reranking on each MERT tuning run
- Improvement of reranking on different genetic algorithm settings
- Time cost

Index of Exps	1	2	3	4	5	6	7	8	9	10
# of Iteration	11	15	15	12	9	10	15	12	14	15
Last Mert	26	22	28	23	17	13	23	12	18	26
Tuning	1222	1766	1657	1329	1047	1113	1694	1363	1613	1741
$len^{1}\&(400 \cdot 100)$	780	615	782	793	570	448	755	499	606	793
$len^2 \& (400 \cdot 100)$	768	624	769	778	569	431	718	499	607	741
$len^2 \& (100 \cdot 50)$	95	76	96	97	70	55	89	63	75	96

 10 experiment's Running Time: in 100 seconds. Compare the GA with the total tuning time, and consider it need only run once at the tuning phase, the computation cost is affordable.

イロア 人間 アイボア 人間アー

Index of Exps	1	2	3	4	5	6	7	8	9	10
# of Iteration	11	15	15	12	9	10	15	12	14	15
Last Mert	26	22	28	23	17	13	23	12	18	26
Tuning	1222	1766	1657	1329	1047	1113	1694	1363	1613	1741
$len^{1}\&(400 \cdot 100)$	780	615	782	793	570	448	755	499	606	793
$len^2 \& (400 \cdot 100)$	768	624	769	778	569	431	718	499	607	741
$len^2 \& (100 \cdot 50)$	95	76	96	97	70	55	89	63	75	96

 10 experiment's Running Time: in 100 seconds. Compare the GA with the total tuning time, and consider it need only run once at the tuning phase, the computation cost is affordable.

ヘロア 人間 アムボア 人間アー

Index of Exps	1	2	3	4	5	6	7	8	9	10
# of Iteration	11	15	15	12	9	10	15	12	14	15
Last Mert	26	22	28	23	17	13	23	12	18	26
Tuning	1222	1766	1657	1329	1047	1113	1694	1363	1613	1741
$len^{1}\&(400 \cdot 100)$	780	615	782	793	570	448	755	499	606	793
$len^2 \& (400 \cdot 100)$	768	624	769	778	569	431	718	499	607	741
$len^2 \& (100 \cdot 50)$	95	76	96	97	70	55	89	63	75	96

 10 experiment's Running Time: in 100 seconds. Compare the GA with the total tuning time, and consider it need only run once at the tuning phase, the computation cost is affordable.

ヘロア 人間 アメポア 人間アー

Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Result Analysis

• MERT+MRCT outperforms MERT both for in-domain and out-of-domain test data

• Why?

BLEU Score vs. Model Score

BLEU Score vs. Model Score

MER Training

- MER Training tries to make the right most dot at the highest position
- MER Training does not care if the rest of the line is monotone

MER Training

BLEU Score vs. Model Score

Max-Margin Training (MIRA)

- Max-Margin Training focuses the positive candidates and the negative candidates
- Max-Margin Training tries the maximize the margin of the model scores between positive candidates and the negative candidates
- Max-Margin Training does not care about the model scores of the medial candidates

Max-Margin Training (MIRA)

BLEU Score vs. Model Score

Min-Risk Training

- Min-Risk training tends to maximize the model score of the candidate with the highest BLEU score, while minimize the model scores of all other candidates
- Min-Risk does not care if the line is monotone or not

Min-Risk Training

BLEU Score vs. Model Score

MRC Training

- MRC Training tries to make the whole line most looks monotone
- MRC Training does not ensure the right most dot be the highest one

MRC Training

BLEU Score vs. Model Score

MERT + MRCT

- MRCT may be regarded as a regularization for MERT
 - There are many possible choices which satisfy the MER criteria, while some of these choices are severely non-monotone
 - The MRCT helps to choose the parameter which most looks monotone, while satisfy the MER criteria
- That's the reason why: MERT+MRCT > MERT

Future Question

 Why the improvements of MERT+MRCT on in-domain test data is much larger than that on out-of-domain test data?

Answer (1/4)

- From the in-domain training data, we obtain both in-domain knowledge and general-domain knowledge.
- In the decoding process, in-domain knowledge and general-domain knowledge are in competition.

Answer (2/4)

- In the n-best list, some candidates are translated using more in-domain knowledge, while some are using more general-domain knowledge.
- The candidates translated using more indomain knowledge usually get higher
 BLEU score because the references is given by in-domain development set.

MER Training

BLEU Score vs. Model Score

Answer (3/4)

- We may find that the in-domain part of the MERT line is basically monotone, while the general-domain part is not.
- But the MRCT line is almost monotone for all parts.

Model Space

- Consider a space consist of all models, where each model is a dot in the space.
- The models perform well in general domain are distributed different with those perform well in specific domains.

Model Space

MERT+MRCT In-Domain Performance General-Domain Performance/ Out-of-Domain Performance

Answer (4/4)

 We can see that the model trained using MERT+MRCT will gain better performance on general-domain test data, as well as on out-of-domain test data, even if we do not the out-of-domain data for training
Outline

Introduction

Motivation

Maximum Rank Correlation Training

Experiments and Results

Result Analysis

Conclusion

Conclusion

- We propose a Maximum Rank Correlation Training approach for parameter tuning for SMT
- We using a multi-objection generative algorithm for parameter tuning
- MRCT + MERT performs a little bit better than MERT for in-domain test data, but much more better for out-of-domain test data
- The time cost of MRCT training is acceptable
- We give an reasonable explanation to the results

THANKS! Q&A