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Introduction 

• MERT: Minimal Error Rate Training 

– N-best candidates are given by the decoder 

for each sentences 

– Tune the parameter λ to make the best 

candidate (with highest BLEU score) to have 

the highest model score 















MERT 

• Not good for rich features (>20) 

• Not stable for local extremums 

• Not generalizable across domains 



Alternative solution: Min-Risk 

• Define the Risk as: 

𝑅 = − 𝑝(𝑐𝑖)

𝑖

SBLEU(𝑐𝑖) 

   while the Posterior Probability can be 

   defined using model score, for example: 

 

 

• Tune the parameter λ to minimize the Risk  

[Li & Eisner EMNLP2009] 



 



Alternative solution: MIRA 

• Select a Positive Set of candidates with 

high BLEU scores 

• Select a Negative Set of candidates with 

low BLEU score 

• Tune the parameter λ to maximize the 

difference (margin) of the model score 

between Negative Set and that of Positive 

Set. 

[Chiang et al. EMNLP2008] 
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Our Motivation: Max Rank Correlation 

• We would like to choose the λ which 

maximize the correlation between the 

ranking of the candidates according 

the model scores and that according 

to the BLEU scores 

 

 



Motivation 

• For example: 8 candidates 

– BLEU score ranking:              1 2 3 4 5 6 7 8 

– Model score ranking with λ1   1 8 7 6 5 4 3 2 

– Model score ranking with λ2   2 1 3 4 5 6 7 8 

• For MERT, λ1 will be chosen 

• We would like to choose λ2 
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Maximum Rank Correlation (MRC) 

Spearman Rank 

Correlation  

Coefficient 



 





Combination of MER and MRC 



Multi-objective Optimization 

• We use multi-objective evolutionary 

algorithm (MOEA) (Fonseca et al., 1993) 

for training. 

• We choose an effective MOEA tool: 

NSGA-II in our experiments. 
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Experiment Settings 

• Data 

– French-English WMT08 shared translation task 

– Training data : Europarl v3b release 

– Language model : English part of monolingual language model 

– training data 

– Tuning set: dev2006 

– In-domain test sets : test2006, test2007, test2008 

– Out-of-domain test sets : newstest2008, newstest2009, 

newstest2010 

• System 

– Machine Translation: Moses Suite 

– Spearman Rank Correlation Coefficient: goose 

– Multi-Objective Optimization: NSGA-II 



Generic Algorithm Settings 

• First Generation 

– 10 individuals from MERT training 

– 390 individuals randomly generated 

• Evolution 

– 100 generations 

– 400 individuals for each generation 



Experiment Process 

Baseline 

Reranking 
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Results 

• Best α on development set 

• Results via different α on test set 

• Improvement of reranking on each MERT 

tuning run 

• Improvement of reranking on different 

genetic algorithm settings 

• Time cost 

 

 

 

 





Results 

• Best α on development set 

• Results via different α on test set 

• Improvement of reranking on each MERT 

tuning run 

• Improvement of reranking on different 

genetic algorithm settings 

• Time cost 

 

 

 

 







Results 

• Best α on development set 

• Results via different α on test set 

• Improvement of reranking on each 

MERT tuning run 

• Improvement of reranking on different 

genetic algorithm settings 

• Time cost 

 

 

 

 



Dev. 

Set 

Test 

Set 

Baseline Reranking 









Results 

• Best α on development set 

• Results via different α on test set 

• Improvement of reranking on each MERT 

tuning run 

• Improvement of reranking on different 

genetic algorithm settings 

• Time cost 

 

 

 

 





Results 

• Best α on development set 

• Results via different α on test set 

• Improvement of reranking on each MERT 

tuning run 

• Improvement of reranking on different 

genetic algorithm settings 

• Time cost 

 

 

 

 









Outline 

Introduction 

Motivation 

Maximum Rank Correlation Training 

Experiments and Results 

Result  Analysis 

Conclusion 



Result Analysis 

• MERT+MRCT outperforms MERT both for 

in-domain and out-of-domain test data 

 

• Why? 
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MER Training 

• MER Training tries to make the right most 

dot at the highest position 

• MER Training does not care if the rest of 

the line is monotone 
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Max-Margin Training (MIRA) 

• Max-Margin Training focuses the positive 

candidates and the negative candidates 

• Max-Margin Training tries the maximize 

the margin of the model scores between 

positive candidates and the negative 

candidates 

• Max-Margin Training does not care about 

the model scores of the medial candidates 



Max-Margin Training (MIRA) 
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Min-Risk Training 

• Min-Risk training tends to maximize the 

model score of the candidate with the 

highest BLEU score, while minimize the 

model scores of all other candidates 

• Min-Risk does not care if the line is 

monotone or not 
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MRC Training 

• MRC Training tries to make the whole line 

most looks monotone 

• MRC Training does not ensure the right 

most dot be the highest one 
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MERT + MRCT 

• MRCT may be regarded as a 

regularization for MERT 

– There are many possible choices which 

satisfy the MER criteria, while some of these 

choices are severely non-monotone 

– The MRCT helps to choose the parameter 

which most looks monotone, while satisfy the 

MER criteria 

• That’s the reason why: 

                MERT+MRCT > MERT 



Future Question 

• Why the improvements of MERT+MRCT 

on in-domain test data is much larger than 

that on out-of-domain test data? 



Answer (1/4) 

• From the in-domain training data, we 

obtain both in-domain knowledge and 

general-domain knowledge. 

• In the decoding process, in-domain 

knowledge and general-domain 

knowledge are in competition. 

 



Answer (2/4) 

• In the n-best list, some candidates are 

translated using more in-domain 

knowledge, while some are using more 

general-domain knowledge. 

• The candidates translated using more in-

domain knowledge usually get higher 

BLEU score because the references is 

given by in-domain development set. 
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Answer (3/4) 

• We may find that the in-domain part of the 

MERT line is basically monotone, while 

the general-domain part is not. 

• But the MRCT line is almost monotone for 

all parts. 



Model Space 

• Consider a space consist of all models, 

where each model is a dot in the space. 

• The models perform well in general 

domain are distributed different with those 

perform well in specific domains. 



Model Space 

General-Domain 

Performance 

In-Domain 

Performance 

Out-of-Domain 

Performance 



MERT 

General-Domain 

Performance 

In-Domain 

Performance 

Out-of-Domain 

Performance 



MERT+MRCT 

General-Domain 

Performance 

In-Domain 

Performance 

Out-of-Domain 

Performance 



Answer (4/4) 

• We can see that the model trained using 

MERT+MRCT will gain better performance 

on general-domain test data, as well as on 

out-of-domain test data, even if we do not 

the out-of-domain data for training 
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Conclusion 

• We propose a Maximum Rank Correlation 

Training approach for parameter tuning for SMT 

• We using a multi-objection generative algorithm 

for parameter tuning 

• MRCT + MERT performs a little bit better than 

MERT for in-domain test data, but much more 

better for out-of-domain test data 

• The time cost of MRCT training is acceptable 

• We give an reasonable explanation to the results 



THANKS! 

Q & A 


