

A Novel Approach to Dropped Pronoun Translation

Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Hang Li, Qun Liu

Presented by Qun Liu

ADAPT Centre, Dublin City University

2016-05-18 Nanjing Normal University

Outline

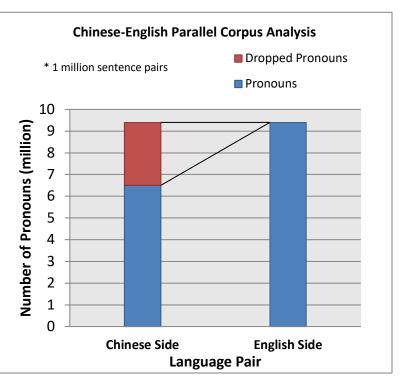
Motivation

- Dropped Pronoun in Machine Translation
- Pronouns in English and Chinese
- Related Work
- Methodology
 - DP Training Corpus Annotation
 - DP Generation
 - Integrating into Translation
- Experiments
- Conclusion

Dropped pronouns (DPs) are challenges in **machine translation**, when certain classes of pronouns are frequently dropped in the **source language** but should retained in the **target language**.

- Pro-drop languages: **Chinese**, **Japanese**, Korean etc.
- Non-pro-drop languages: French, German, and English etc.

This poses difficulties for Statistical Machine Translation (SMT) from **pro-drop** languages (e.g. Chinese) to **non-pro-drop languages** (e.g. English), since translation of such missing pronouns cannot be normally reproduced.



Quirk et al (1985) classifies the principal English pronouns into three groups: **personal pronouns**, **possessive pronouns** and **reflexive pronouns**, called **central pronouns**. In our work, we mainly focus on central pronouns in English-Chinese for MT.

Category	Subject/Object	Possessive (+particle "的")	Reflexive (+word "自己")
1st SG	我 (I/me)	我的(my/mine)	我 自己 (myself)
2nd SG	你 (you)	你的 (your/yours)	你 自己 (yourself)
3rd SGM	他 (he/him)	他的 (his)	他 自己 (himself)
3rd SGF	她 (she/her)	她的 (her/hers)	她 自己 (herself)
3rd SGN	它 (it)	它的(its)	它 自己 (itself)
1st PL	我们 (we/us)	我们的 (our/ours)	我们 自己 (ourselves)
2nd PL	你们 (you)	你们的 (your/yours)	你们 自己 (yourselves)
3rd PLM	他们 (they/them)	他们的(their/theirs)	他们 自己 (themselves)
3rd PLF	她们 (they/them)	她们的(their/theirs)	她们 自己 (themselves)
3rd PLN	它们 (they/them)	它们的(their/theirs)	它们 自己 (themselves)

^{*} Correspondence of pronouns in Chinese-English (abbreviations: person type = 1st, 2nd, 3rd, singular = SG, plural = PL, male = M, female = F and neutral = N).

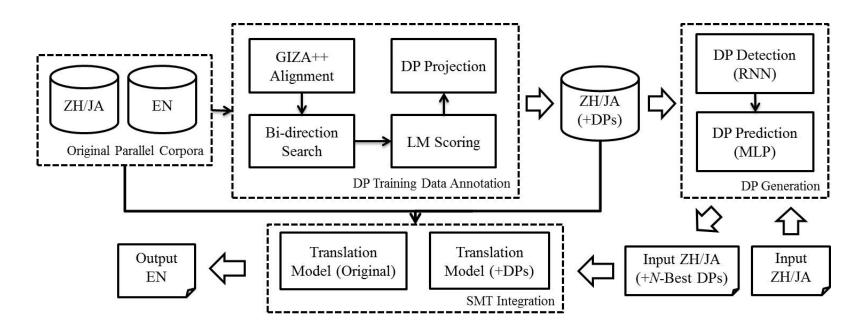
There is some work related to DP generation:

- Zero pronoun resolution, which is a sub-direction of co-reference resolution (Zhao and Ng, 2007; Kong and Zhou, 2010; Chen and Ng, 2013).
- Empty categories, which aims to recover long-distance dependencies, discontinuous constituents and certain dropped elements in phrase structure treebanks (Yang and Xue, 2010; Cai et al, 2011; Xue and Yang, 2013).

The above methods can also be used for DP translation using SMT:

- Taira et al (2012) propose both simple rule-based and manual methods to add zero pronouns on the source side for Japanese-English translation.
- Le Nagard and Koehn (2010) present a method to aid English pronoun translation into French for SMT by integrating co-reference resolution.

We propose a universal **architecture** of our method, which can be divided into three main components: **DP training data annotation**, **DP generation**, and **SMT integration**.



We propose **bidirectional search** method to automatically annotate DPs by utilizing alignment information.

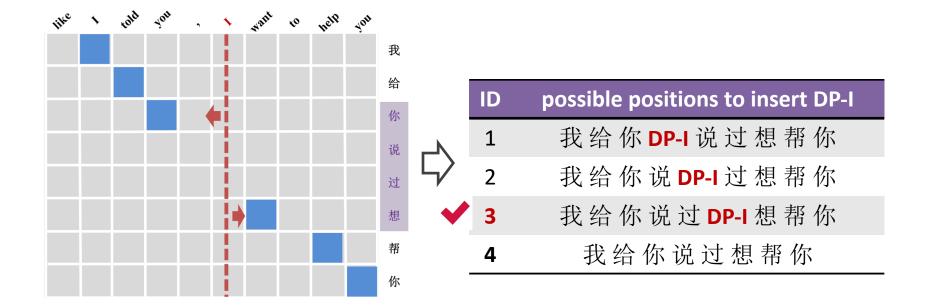
We first algorithm to detect possible positions for DP.

Algorithm 1 Bidirectional search algorithm in MATLABTM

```
function [DP_start, DP_end] = BidirectionalSearch(Matrix, Misalign)
  row = sum(Matrix, 1);
  row_true = find(row == 1);
  left_side = row_true(row_true < Misalign);
  DP_start = find(Matrix(:, left_side(end)) == 1);
  right_side = row_true(row_true > Misalign);
  DP_end = find(Matrix(:, right_side(1)) == 1);
end
```

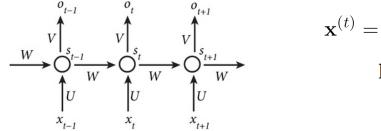
To further determine the **exact position of DP**, we score all possible sentences with inserting corresponding Chinese DP using **language models** trained on a lager corpus.

We use an example to illustrate our idea.



We parse this task into two phases: **DP detection** and **DP prediction**.

•DP detection. We employ RNN and regard it as sequence labelling problem.



$$\mathbf{x}^{(t)} = \mathbf{v}^{(t-k)} \oplus \cdots \oplus \mathbf{v}^{(t)} \oplus \cdots \oplus \mathbf{v}^{(t+k)}$$
$$\mathbf{h}^{(t)} = f(U\mathbf{x}^{(t)} + V\mathbf{h}^{(t-1)})$$
$$y^{(t)} = g(W\mathbf{h}^{(t)})$$

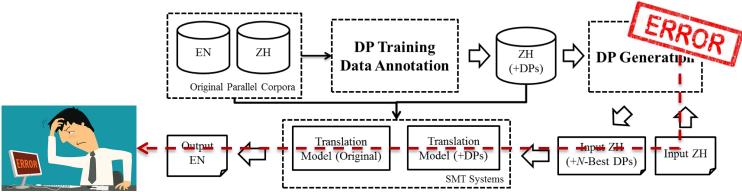
•DP prediction. Based on detection results, we use a MLP with rich features: lexical,

context and syntax.

Actually, in our pilot experiments [3], we also employ **LMs** to select the best DP from all pronoun candidates. However, the performance is not good.

ID.	Lexical Feature Set
1	W surrounding words around p
2	W surrounding POS tags around p
3	previous pronoun in the same sentence
4	following pronoun in the same sentence
	Context Feature Set
5	pronouns in previous X sentences
6	pronouns in following X sentences
7	Y nouns in previous sentences
8	Y nouns in following sentences
	Syntax Feature Set
9	path from current word (p) to the root
10	path from previous word $(p-1)$ to the root

DP-inserted translation model (DP-ins. TM) and DP-generated input (DP-gen. Input).



But **DP-gen. Input** suffers from a major drawback: it only uses 1-best prediction result for decoding, which potentially introduces translation mistakes due to the propagation of prediction errors.

N-best DP-gen. Input. feed the decoder (via confusion network decoding) N-best prediction results, which allows the MT to arbitrate between multiple ambiguous hypotheses.

For training data, we extract around **1M sentence pairs** (movie or TV episode subtitles) from subtitle websites.

- keep contextual information.
- manually create development and test sets.
- two LMs for the **DP annotation** and **translation tasks**, respectively.

Corpus	Lang.	Sentences	Pronouns	Ave. Len.
Train	ZH	1,037,292	604,896	5.91
	EN	$1,\!037,\!292$	816,610	7.87
Dev	ZH	1,086	756	6.13
Dev	EN	1,086	1,025	8.46
Test	ZH	1,154	762	5.81
1620	EN	$1,\!154$	958	8.17

- phrase-based SMT model in Moses; 5-gram language models using the SRI Language Toolkit; GIZA++; minimum error rate.
- case-insensitive NIST BLEU.
- Theano neural network toolkit to implement RNN and MLP.

- We first check whether the DP annotating strategy is reasonable.
- We automatically and manually insert DPs into the source sides of development and test data with considering their target sides.
- The agreements between automatic labels and manual labels are:
 - □ DP detection: **94%** and **95%** on development set and test set;
 - ☐ DP prediction: **92%** and **92%** on development set and test set.
- This indicates that the automatic annotate strategy is **trustworthy** for DP generation and DP-inserted translation model.

We then measure the accuracies (in terms of words) of our generation models in two phases: **DP detection** and **DP prediction**.

- **DP Detection ("Position")**. We only consider the tag for each word (drop or not drop before the current word), without considering the exact pronoun for DPs.
- DP Prediction ("+Pronouns"). We consider both the DP position and predicted pronoun.

DP	Set	P	R	F 1
DP Detection	Dev	0.88	0.84	0.86
Dr Detection	Test	0.88	0.87	0.88
DP Prediction	Dev	0.67	0.63	0.65
Dr Fiediction	Test	0.67	0.65	0.66

Table 3: Evaluation of DP generation quality.

- Baseline are relatively low because 1) only one reference and 2) dialogue domain.
- +DP-ins. TM indicates that the DP insertion is helpful to alignment.
- +DP-gen. Input N is a more soft way of integration than 1-best.
- Oracle shows that there is still a large space of improvement for the DP generation model.

Systems	Dev Set	Test set
Baseline	20.06	18.76
+DP-ins. TM	20.32 (+0.26)	19.37 (+0.61)
+DP-gen. Input		
1-best	20.49 (+0.43)	19.50 (+0.74)
2-best	20.15 (+0.09)	18.89 (+0.13)
4-best	20.64 (+0.58)	19.68 (+0.92)
6-best	21.61 (+1.55)	20.34 (+1.58)
8-best	20.94 (+0.88)	19.83 (+1.07)
Manual Oracle	24.27 (+4.21)	22.98 (+4.22)
Auto Oracle	23.10 (+3.04)	21.93 (+3.17)

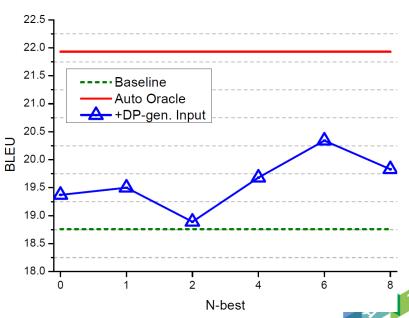


Table 4: Evaluation of DP translation quality.

Case A (Better)

(Baseline) <u>想不想</u> 听 <u>一件</u> <u>奇怪的</u> 事 ? Wanna hear something weird?

(1-best) 〈你〉 <u>想不想</u> 听 <u>一件</u> <u>奇怪的</u> 事 ? Do〈**you**〉 want to hear something weird?

(reference) Do you want to hear something weird?

Case B (Unchanged)

 不要
 告诉
 瑞秋
 、〈你〉待会
 见。

 (1-best)
 |
 |
 |

 Do not
 tell
 Rachel
 See 〈you〉 later

(reference) Do not tell Rachel . See you later .

你 <u>肯定</u> <u>看过</u> 那 <u>电视剧</u>。 (Baseline) | | | |

Case C (Worse)

You must <u>have seen</u> that show.

(reference) You must have seen that one .

Case D

都 <u>不会</u> 想 我 吗 ? (Baseline) Won 't even miss me ?

(1-best) 〈我〉都 <u>不会</u> 想 我 吗 ?
(1-best) 〈I〉won 't even miss me ?

(2,4,6-best) 〈我|你|...〉都 <u>不会</u> 想 我 吗? You <u>won 't</u> even miss me ?

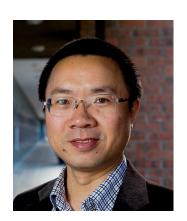
(8-best) (我|你|他|...) 都 <u>不会</u> 想 我 吗? He <u>won 't</u> even miss me ?

(reference) You won 't even miss me

- Bilingual information is helpful to set up a monolingual model without any manually annotated training data;
- Benefited from representation learning, NN-based models work well without complex feature engineering work;
- N-best (a soft way) DP integration works better than ponderous
 1-best insertion.

In future work, we plan to extend our work to different genres, languages and other kinds of dropped words to validate the robustness of our approach.

Q&A



Qun Liu, Professor, Dr., Pl

ADAPT Centre
Dublin City University

Institute of Computing Technology Chinese Academy of Sciences

Email: qun.liu@dcu.ie