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INTRODUCTION

Statistical Machine Translation

Dependency Structures
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Statistical Machine Translation

• What is SMT?

• Advantages of SMT

• Framework of SMT

• SMT Approaches
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What is SMT?

SMT is a machine translation paradigm which relies on 
parallel corpora and machine learning techniques

6 Dependency-Based SMT [Image from TAUS USER CONFERENCE 2010]



Advantages of SMT

Data driven•

Language independent•

Less dependent on language experts•

Fully automatic•

Fast prototype and deploy•

7 Dependency-Based SMT



Framework of SMT

• Noisy-Channel Model

𝑡∗ = argmax 𝑝 𝑡 𝑠
= argmax 𝑝 𝑡 𝑝(𝑠|𝑡)

Language Model Translation Model

t p(t) p(s|t) s

8 Dependency-Based SMT [Brown 1988,1990,1993]



Framework of SMT

• Log-Linear Model

Generalization of the Noisy• -Channel Model
Allow • arbitrary number of features
Features are tunable•

9 Dependency-Based SMT [Och et al., 2002]



SMT Approaches
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Sequence-Based

Tree-Based Graph-Based

Token-Based

Word-based Phrase-based

Dependency Edge
Dependency Path

Dependency Treelet
Hierarchical Phrase-based

Tree-to-String
String-to-Tree
Tree-to-Tree

Dependency-to-String
Tree-to-Dependency

Dependency-to-Dependency

Dependency Graph Segmentation
Dependency Edge Replacement
Dependency Node Replacement
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Phrase-Based SMT

• Source sentences are segmented into phrases
• Source phrases are translated into target phrases
• Target phrases are reordered

11 Dependency-Based SMT [Koehn, 2003]



Phrase-Based SMT

Search Space:

Beam Search:

Illustration as in [Liu et al., 2014]
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Tree-Based SMT

Motivation•

Hierarchical Phrase• -Based SMT

String• -to-Tree SMT

Tree• -to-String SMT

Tree• -to-Tree SMT

Forest• -Based SMT
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Motivation

• Phrase reordering

• Generalizations
– French ne…pas to English not
– Chinese Yu…WuGuan to English has nothing to do with

Reordering within phrases•

Only continuous phrases•

14 Dependency-Based SMT Syntactic tree from [Koehn, 2010]



Hierarchical Phrase-Based SMT

• Rule Form

• Glue Rule

𝑋 → 𝛾, 𝛼, ~

𝑆 → 𝑆1𝑋2, 𝑆1𝑋2
𝑆 → 𝑋1, 𝑋1

15 Dependency-Based SMT [Chiang, 2005, 2007]



Hierarchical Phrase-Based SMT

Search hypergraph:

Beam:

Image from [Koehn, 2010]

16 Dependency-Based SMT



String-to-Tree SMT

Training
• Target sentences are parsed 

into trees
• Extract string—tree pairs
Decoding
• Parse source sentences using 

hierarchical phrases on the 
source side of rules

• Generate target trees using 
target subtrees in rules

17 Dependency-Based SMT [Galley et al., 2004, 2006]



Tree-to-String SMT

Training
• source sentences are parsed 

into trees
• Extract tree--string pairs

Decoding
Parse source sentences •

beforehand
Generate target words•

18 Dependency-Based SMT [Liu et al., 2006]



Tree-to-Tree SMT

Training
Source and target sentences •

are parsed into trees
Extract tree• --tree pairs

Decoding
• Parse source sentences 
• Generate target trees 

using subtrees in rules

19 Dependency-Based SMT [Zhang et al., 2007]



Forest-Based SMT

20 Dependency-Based SMT [Mi et al., 2008]



Graph-Based SMT

• Semantic Representation

• Semantic-Based SMT

21 Dependency-Based SMT



Semantic Representation

Abstract Meaning Representation (AMR)•

The boy wants to go

22 Dependency-Based SMT [Laura et al., 2013]



Semantic-Based SMT

Translation process:

Edge-word alignments: Rules:

23 Dependency-Based SMT [Jones et al., 2012]



Dependency Structures

Dependency Tree•

Why Dependency in SMT?•

24 Dependency-Based SMT



Dependency Tree

• Deep vs flat
• Word-node correspondence: one-to-one-or-

many vs one-to-one
• Simple in formalism yet having CFG equivalent 

formal generative capacity [Ding et al., 2004]

25 Dependency-Based SMT



Dependency Tree

ProjectiveNon-projective

26 Dependency-Based SMT Image from Wikipedia



Why Dependency in SMT?

Semantic relation between words•

Best inter• -lingual phrase cohesion [Fox, 2002]

Flexible translation units•

27 Dependency-Based SMT



Summary

• SMT models benefit from syntactic structures

– HPB

– T2S

– S2T

– T2T

• Dependency structures have the best inter-
lingual phrasal cohesion property

28 Dependency-Based SMT
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DEPENDENCY-BASED MT 
EVALUATION

MT Evaluation Introduction

Human Evaluation

Automatic Evaluation

Dependency-Based Evaluation

31
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Introduction of MT Evaluation

Goal: evaluate translation performance of SMT 
systems

Meaning preserved–

Grammatically correct–

Difficulty: no single right answer

32 Dependency-Based SMT Image from [Koehn, 2010]



Direct Human Evaluation

Adequacy: same meaning?

Fluency: grammatically correct?

33 Dependency-Based SMT
[Graham et al., 2016]

Tables and images from [Koehn, 2010]



Rank-Based Human Evaluation

Dependency-Based SMT34



Human Evaluation

Time• -consuming

expensive: e.g. professional translator?•

unrepeatable: precious human labor cannot be •

simply re-run

low• -agreement: both inter and intra judgement. 

e.g. WMT– 11 EN-CZ task, multi-annotator agreement 
kappa value is very low; even the same strings 
produced by two systems were ranked differently 
each time by the same annotator [Callison-Burch, et al., 2011]

35 Dependency-Based SMT



Automatic MT Evaluation

Difficulty in automatic evaluation• : 

Language variability, language ambiguity–

How to evaluate semantic and syntactic quality–

How to evaluate automatic evaluation metrics: •
Usually calculate the correlation score with human judgements–

We expect:•
Repeatable: can be re– -used whenever we make some changes on SMT 
systems
Fast: minutes or seconds for evaluating – 3k sentences vs hours of 
human labor
Cheap: compared with employment of human judges–

Stable: each time of running, with same score for un– -changed output
Reliable: give a higher score for better translation output–

Further benefit: tune system parameters with automatic metrics–

36 Dependency-Based SMT



Automatic MT Evaluation

• Lexicon-based similarity metrics
– BLEU [Papineni et al., 2002]

– TER [Snover et al., 2006]

– METEOR [Lavie et al., 2007; Denkowski et al., 2011]

• Semantic-based similarity metrics:
– MEANT/HMEANT series [Lo et al., 2012, 2013]. Use semantic 

role labelling information, accuracy of labelling drops 
due to translation errors.

• Syntax-based metrics
– Constituency structures
– Dependency structures

37 Dependency-Based SMT



BLEU

n-gram precision: length penalty:

Most widely used metric•

Language independent•

Multiple references•

No recall•

Geometric averaging •

Words are equally weighted•

Weak at semantic equivalents•

Document• -level

38 Dependency-Based SMT [Papineni et al., 2002; Callison-Burch et al., 2006]



METEOR

Precision, recall, F• -measure

Alignment• and Word-order penalty

Matching•

Exact–

Stem–

WordNet–

Paraphrase–

Function words, content words•

Tunable•

39 Dependency-Based SMT



Dependency-Based Evaluation

• Advantages of dependency structures

• Subtree and head-word chain matching

• Dependency relation matching

• RED metrics

• Parsing as Evaluation

• RNN-based MT evaluation

40 Dependency-Based SMT



Advantages of Dependency Structures

Syntactic equivalents•

Structures and categories–

Better structures for languages with freer •

word-order

Long• -distance matching

41 Dependency-Based SMT



Subtree And Head-Word Chain Matching

Subtree matching:

Head-word chain matching:

dependency constituent

subtree

Head-word chain

42 Dependency-Based SMT [Liu et al., 2006]



Dependency Relation Matching

Lexical Functional Grammar:

subj(resign, john), pers(john, 3), num(john, sg)
tense(resign, past), adj(resign, yesterday)
pers(yesterday, 3), num(yesterday, sg)

43 Dependency-Based SMT [Owczarzak et al., 2007]



Dependency Relation Matching

CCG Only parse references

Dependent ordering score (DOS):
For each head word in the ref•

For each left dependent•

If the head appears in the •

MT output and the 
dependent is on the left, 
add value 1

Similar process for the right •

dependents

Final score: 
recall in terms of DOS * length penalty

44 Dependency-Based SMT [Mehay et al., 2007]



RED Metric

RED: • REference Dependency based MT 
evaluation metric 

Only use reference dependency tree•

Two kinds of reference dependency •
structures:

Head– -word chains: capture the long-distance 
dependency information

Fixed and floating structures – [Shen et al. 2010]: capture 
local continuous ngrams

45 Dependency-Based SMT [Yu et al., 2014]



RED Metric

Figure 3: scoring head-word chain matching

Extra resources REDp (plus): 
• stem and synonym 
• paraphrase
• function word, content word

46 Dependency-Based SMT



Evaluation
Tab 1: system-level correlation

Tab 2: sentence-level correlation

47 Dependency-Based SMT



HPB MT tuned on RED

48 Dependency-Based SMT [Li et al., 2015]



Parsing As Evaluation

• Train a maximum-entropy model-based 
dependency parser on references

– References are parsed by the Stanford parser

• Parse hypotheses and use the normalized 
parsing probability as a score

• Lexical score: unigram f-score

• Final score:

49 Dependency-Based SMT [Yu et al., 2015]



Parsing As Evaluation
System-level

Sentence-level

50 Dependency-Based SMT



RNN-Based MT Evaluation

Evaluation score

51 Dependency-Based SMT [Gupta et al., 2015, Tai et al., 2015]



Evaluation

Dependency-Based SMT52



Summary

Dependency structures are helpful on MT •
evaluation

Subtrees–

Head– -word chains
Fixed/floating structures–

Dependency relations–

RNN–

Extra resources are important to evaluation •
performance but language-dependent.

Thanks Lifeng Han for his help on this section.
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TRANSLATION MODELS BASED ON 
SEGMENTATION

Structure Segmentation

Why Segmentation?

Dependency Tree Segmentation

Dependency Graph Segmentation
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Structure segmentation

57 Dependency-Based SMT

Segmentation divides structures into units.

Graph Segmentation

Tree Segmentation

Sentence Segmentation

Sentence -> phrases
Phrase-based models

tree -> treelets
treelet-based models

graph -> subgraphs
graph-based models



Why Segmentation?

• Intuitive
– Instead of translating a whole sentence at a time, 

translating parts and then combing them

• Small model
– Not reply on recursive rules 

• Flexible translation units
– Such as treelets and subgraphs covering discontinuous 

spans.

• Fast decoding in practice
– Phrase-based model vs hierarchical phrase-based 

model

58 Dependency-Based SMT



Dependency Segmentation

Dependency Tree Segmentation•

edges, paths, – treelets

Dependency Graph Segmentation•

subgraphs–

Dependency-Based SMT59

treelets paths edgessubgraphs



Dependency Edge Model

60 Dependency-Based SMT

Subtree translations

Non-terminal nodes for 
integrating subtree translations

Different word order
For efficiency: 

distortion limitation

Bottom-up translate

[Chen et al., 2012]



Dependency Edge Model

61 Dependency-Based SMT

Tab 1: BLEU scores

Low distortion limit: 
less reordering is allowed.•

Target words are in the similar •

order with source words.
Fast decoding•

High distortion limit:
Allow too much reordering•

Introduce many bad translations•

Low efficiency•

Incorporating 
phrasal rules

[Chen et al., 2012]



Dependency Path Model

62 Dependency-Based SMT

Path
Not path

is a head word𝑛𝑘

monotonic

[Lin, 2004]



Dependency Path Model

63 Dependency-Based SMT

Decoding:
A source sentence is parsed into •

a dependency tree
Extract all paths and find transfer •

rules
Find a sequence of transfer rules •

which
cover the source treeo

generate a target treeo

Have the highest probabilityo

Obtain a target sequence from •

the target tree

Rules:

Worse than the phrase-based model

[Lin, 2004]



Dependency Treelet Model

Dependency-Based SMT64

A treelet is defined to be an arbitrary connected subgraph of 
a dependency tree.

treelets paths edges

Not a path but a treelet

[Quirk et al., 2005]



Dependency Treelet Model

65 Dependency-Based SMT

Example translation rule

Projection based on word alignments

Reattachment to keep target word order

[Quirk et al., 2005]



Dependency Treelet Models

Dependency-Based SMT66

Bottom• -up decoding
Translations of • treelets are 
attached together to form a 
complete translation
Attachment during decoding: •

combinatory problem

Attach target trees to the head word
=Insert translations into  installes sur
3*4=12 possibilities!

[Quirk et al., 2005]



Evaluation

67 Dependency-Based SMT

Tab 1: System comparison Tab 3: Influence of treelet or phrase size

Tab 2: Influence of reordering Tab 4: Continuity vs Discontinuity

[Quirk et al., 2005]



Allowing Variables and Gaps

68 Dependency-Based SMT

Variables: source -- target

Gaps: only target

Weak at reordering
[Xiong et al., 2007]



Dependency Graph Segmentation

Why Graph Segmentation?•

How to Construct Graphs?•

Segmentational• Graph-Based Model

Context• -Aware Segmentation

Dependency-Based SMT69



Why Graph Segmentation?

70 Dependency-Based SMT



Why Graph Segmentation?

71 Dependency-Based SMT



Why Graph Segmentation?

72 Dependency-Based SMT



Why Graph Segmentation?

73 Dependency-Based SMT [Li et al., 2016]



How to Construct Graphs?

74 Dependency-Based SMT [Li et al., 2016]



How to Construct Graphs?

75 Dependency-Based SMT

subgraphs



Segmentational Graph-Based Models

• Training

Dependency-Based SMT76 [Li et al., 2016]



Segmentational Graph-Based Models

Training•

77 Dependency-Based SMT

Continuous phraseDiscontinuous phrase



Segmentational Graph-Based Models

Training•

78 Dependency-Based SMT



Segmentational Graph-Based Models

Decoding•

79 Dependency-Based SMT [Li et al., 2016]



Evaluation

80 Dependency-Based SMT

Tab 2: system rule numberTab 1: BLEU scores



Evaluation

Dependency-Based SMT81

Treelet• tends to use 
smaller phrases. (only 
dependency relations, 
low coverage)

GBMT uses more larger •

phrase pairs. (+bigram 
relations)

Higher phrase coverage leads 
to larger phases to be used



Evaluation

Dependency-Based SMT82

Tab 1: rule number according to their types

Tab 2: BLEU scores

70%

42%--48%

Share >30%

15%--17%

Inconsistency: more 
TreeRules are extracted 
and used?

small contribution but 
the best



Evaluation

Dependency-Based SMT83

Tab 1: Influence of edge types

Tab 2: rule number

A B C

A B C

dep dep

bg

Less ambiguity



Evaluation

Dependency-Based SMT84

Less sensitive:
Even though the distortion 
limit is small, subgraphs can 
cover long-distance 
discontinuous phrases.

distortion limit: 
disallows long• -distance 
phrase reordering
speed up the decoder•

often improve translation•

performance.



Evaluation

Dependency-Based SMT85



Context-Aware Segmentation

• Why context-awareness?

• Graph segmentation model

• Context-aware rules

Dependency-Based SMT86



Why Need Context-Awareness?

Better subgraph selection•

Better rule selection•

Dependency-Based SMT87



Graph Segmentation Model

Dependency-Based SMT88

Sparse Features:

Basic Assumption:

Current node n

A node n’ connected 
to the current node

Where the node 
n’ comes from 

Connection 
directions

[Li et al., 2016]



Graph Segmentation Model

Dependency-Based SMT89

Extract for each node

Full generalization



Evaluation

Dependency-Based SMT90



Context-Aware Rules

Dependency-Based SMT91

𝑔, 𝑡Rule form: 𝑔, 𝑐, 𝑡

Rule Types:

Basic Rule

Segmenting Rule

Selecting Rule

Segmenting rules and selecting 
rules are extensions of basic 
rules by adding context 
information so that basic rules 
are split into different groups 
according to their contexts. 

[Li et al., 2016]



Evaluation

Dependency-Based SMT92

Tab 1: BLEU scores

Tab 2: Influence of context 

Tab 3: number of rules

Tab 4: influence of rules

Selecting rules are less often used?



Evaluation

Dependency-Based SMT93



Summary

Segmentation-based models are flexible to use 
translation units. However, they are weak at phrase 
reordering.

Main research lines:
Segmenting Dependency Tree–

Edge•

Path•

Treelet•

Segmenting Dependency Graph–
Subgraph•

Contexts are helpful•

94 Dependency-Based SMT
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Dependency-to-String Models

Dependency Graph-to-String Models
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Synchronous Grammars

• Synchronous context free grammar (SCFG)

– Hierarchical phrase-based models

• Synchronous tree substitution grammar 
(STSG)

– Tree-to-string models

– String-to-tree models

– Tree-to-tree models
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SCFG
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SCFG

Dependency-Based SMT100 [Chiang, 2007]



STSG
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STSG

Dependency-Based SMT102 [Koehn, 2010]



Why Synchronous Grammars?

Target phrase reordering•

Recursive rules–

Linguistic theory•

Syntax annotations–
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String-to-Dependency Model

Extension of hierarchical phrase• -based model

Well• -formed dependency structures

Dependency tree on the target side•

Dependency language model•

Dependency-Based SMT104 [Shen et al., 2008, 2010]



Well-Formed Dependency Structures
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Ill-formed

Head node + full subtrees
Continuous span

[Shen et al., 2008, 2010]



Well-Formed Dependency Structures

106 Dependency-Based SMT106 [Shen et al., 2008, 2010]

Ill-formed

Sibling subtrees
Continuous span



Construct Target Dependency Tree

Four operations:•

Examples•

Dependency-Based SMT107

fixed floating

[Shen et al., 2008, 2010]



Dependency Language Model

Dependency-Based SMT108

root word

Left dependents: from 
right to left

Right dependents: 
from left to right

Recursive on subtrees

[Shen et al., 2008, 2010]



Training and Decoding 

Training•
Similar to [Chiang, – 2007]
Keep target dependency structures–

Only extract well– -formed dependency structures

Decoding•
Similar to [Chiang, – 2007]
Build target dependency trees–

Non• -terminal
POS of the head in fixed structures–

X for floating structures–
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Evaluation

Dependency-Based SMT110

Tab 1: The number of rules

Tab 2: Evaluation results

Only phrases 
covered by well-
formed structures

POS-based non-
terminals

Worse but use fewer 
translation rules

Dependency language 
model is useful

Syntactic non-terminals 
are helpful



Dependency Forest

111 Dependency-Based SMT [Tu et al., 2010]



Why Dependency Forest?

Dependency-Based SMT112 [Quirk et al., 2006]



String-to-Dependency Models

113 Dependency-Based SMT

Tab1：Evaluation Result

Tab2：model size

Korean--Chinese [Tu et al., 2010]



Dependency-to-String Model

• Fast decoding

– Linear in practice [Huang et al., 2008]

• Dependency-to-string model

• Handling non-syntactic phrases
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Dependency-to-String Model

115 Dependency-Based SMT

Head-Dependent (HD) Fragment

HD Rule

Head Rule

[Xie et al., 2011]



Dependency-to-String Model
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Lexicalized HD Rule:

Unlexicalized Rule

[Xie et al., 2011]



Dependency-to-String Model

Decoding•

CYK algorithm–

Post– -order traverse

Dependency-Based SMT117

Tab: Evaluation Results

[Xie et al., 2011]



Handling Non-syntactic Phrases

Dependency-Based SMT118

Non-syntactic phrases:
• Large number
• Local reordering
• Important to phrase 

coverage
• Improve systems 

performance

Syntactic phrases:
Smaller amount•

Reliable•

Long• -distance reordering
Easy to use in models•

Dependency structures are flat.



Handling Non-syntactic Phrases

Important to phrase coverage 
and systems performance

Dependency-Based SMT119 [Koehn et al., 2003]



Handling Non-syntactic Phrases

Methods:•

Using constituent trees–

Integrating fixed/floating structures–

Decomposing dependency structures–
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Using Constituent Tree
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Phrases that cannot be captured by a dependency tree 
can be captured by a constituency tree

[Meng et al., 2013]



Using Constituent Tree

122 Dependency-Based SMT

HD Rule:

CHD Rule:

[Meng et al., 2013]



Evaluation

Dependency-Based SMT123

Tab 1: Evaluation results. (+phrase pairs)

Tab 2: The proportion (%) of 1-best translations that 
employ CHDR-phrasal rules (CHDR-phrasal Sent.) and 
the proportion (%) of CHDR-phrasal rules in all CHDR 
rules in these translations (CHDR-phrasal Rule)

[Meng et al., 2013]



Integrating Fixed/Floating Structures 

124 Dependency-Based SMT

floating

fixed

The same number of rules:
Use bilingual phases during decoding•

But focus on phrases covered by •

fixed/floating structures

[Xie et al., 2014]



Dependency Decomposition

Dependency-Based SMT125

Formal definition: Example:

During training: extract more rules
During decoding: translate an HD fragment in two steps

[Li et al., 2014]



Decomposition During Decoding
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Evaluation

Dependency-Based SMT127

Tab 1: Influence of decomposition

Tab 2: Influence of phrase pairs

Tab 3: Rule number

[Li et al., 2014]



Revisit Non-syntactic Phrases

Non• -syntactic phrases exist in linguistically 
syntax-based models

STSG (over SCFG)–

Focus on – subtrees

Same generative capability on – string pairs

Stronger generative capability on – tree pairs

Add patches to tree• -based models [previous slides]

Dependency-Based SMT128 [Chiang, 2012]



Revisit Non-syntactic Phrases

• Graphs vs Trees

– More complex structures

– More powerful to model sentences

• AMR for semantic, graphs for feature structures

– Graph grammars

– Non-syntactic phrases could be connected

– Subgraphs, without the definitions of syntactic 
and non-syntactic phrases
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Dependency Graph-to-String Models

• Graph grammars

– Edge replacement grammar (ERG)

– Node replacement grammar (NRG)

• Models based on graph grammars

– ERG-based model

– NRG-based model
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Graph Grammars

Dependency-Based SMT131

Hierarchy of graph grammars:

Ignore node label in 
this tutorial Ignore edge label in 

this tutorial

[Kukluket al., 2008]



Edge Replacement Grammar

Graph•

Edge– -labeled

Directed–

Graph fragment definition•

Basic deviation units–

Graph–

External nodes–

Prevent – hyperedges

Dependency-Based SMT132 [Li et al., 2015]



Edge Replacement Grammar

Dependency-Based SMT133 [Li et al., 2015]



Edge Replacement Grammar

Derivation•

Dependency-Based SMT134



Synchronous Edge Replacement Grammar

Dependency-Based SMT135 [Li et al., 2015]



Synchronous Edge Replacement Grammar

• SERG has a stronger generative capacity over 
structure pairs than both SCFG and STSG
– STSG has a stronger generative capacity over structures 

than SCFG [Chiang, 2012]

– Any STSG can easily be converted into an SERG by labeling 
edges in tree structures

– The following SERG generates a trivial example of a graph 
pair, which no STSG can generate

Dependency-Based SMT136 [Li et al., 2015]



Node Replacement Grammar

Derivation•

Dependency-Based SMT137

Embedding mechanism which can be 
ignored during parsing [Kukluket al., 2008]



Synchronous Node Replacement Grammar

• For machine translation

• SNRG has a stronger generative capacity over 
structure pairs than both SCFG and STSG
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ERG-Based Model

• Create edge-labeled graphs

• Practical restrictions

• Training

• Decoding
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Create Edge-Labeled Graphs

Dependency-Based SMT140 [Li et al., 2015]



Practical Restrictions

Word• -order restriction

Continuity restriction•

Non• -terminal restriction
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Word-Order Restriction

Keep word order•

Dependency-Based SMT142

(a) C B D (b) B C D



Continuity Restriction

Subgraphs cover continuous phrase • (from 

exponential to polynomial)

Dependency-Based SMT143

Decoding Process

……

1 2 n

𝑂(2𝑛) subgraphs

𝑂(𝑛2) subgraphs

continuity



Non-terminal Restriction

Dependency-Based SMT144

JuXing/VV

Zai/P ChengGong/AD

NanFei/NR

ShiJieBei/VV Zai/P ChengGong/AD

NanFei/NR

One Head

Multiple Head



Training

Similar to [Chiang, 2007], but:

Check if the source side is a valid graph–

Keep dependency structures in rules–

Induce non– -terminals for the source side

Dependency-Based SMT145

Invalid

invalid



Decoding

Dependency-Based SMT146

treelet, non-syntactic phrase



Decoding

Dependency-Based SMT147

non-syntactic phrase
not connected in the tree

allow phrase reordering



NRG-Based Model

Node• -labeled graphs

Dependency-Based SMT148



NRG-Based Model

The same practical restrictions•

Similar training and decoding processes•

Rule example:•

Dependency-Based SMT149

POS non-terminal

Embedding mechanism is ignored

Phrase reordering



NRG-Based Model

Dependency-Based SMT150

treelet, non-syntactic phrase



NRG-Based Model

Dependency-Based SMT151

non-syntactic phrase
not connected in the tree

allow phrase reordering



Evaluation

Dependency-Based SMT152

Tab 1: BLEU scores

Tab 2: Influence of POS non-terminals

Tab 3: influence of sibling edges

Tab 4: Influence of edge types



Evaluation
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Correct reordering



Evaluation
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Summary

Models based on synchronous grammars can •

learn recursive rules.

Non• -terminals in recursive rules are used for 
target-phrase reordering

Graph grammars•

SERG–

SNRG–
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SMT Benefits From Structures

Sequence• -based
Phrase– -based

Tree• -based
Hierarchical phrase– -based
Tree– -to-string
String– -to-tree
Tree– -to-tree
Forest– -based
Dependency– -based

Graph• -based
Semantic– -based
Dependency graph– -based
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Dependency-Based Evaluation

• Automatic evaluation is important
– Lexical

– Semantic

– Syntactic

• Dependency structures and relations provide 
rich information for evaluation
– Subtree, head-word chain, fixed/float structures

– Dependency relations

– RNN
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Segmentational Dependency-Based Models

• Segmenting dependency structures provide 
various translation units

– Edge

– Path

– Treelet

• Dependency graphs provide subgraphs as the 
basic translation units.
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Recursive Dependency-Based Models

Synchronous grammars provide theoretical •
foundation for SMT
Recursive rules provide information on how to •
perform phrase reordering
SMT systems also benefit from linguistic non• -
terminals
Tree• -based models are weak at translating non-
syntactic phrases
Dependency graphs • naturally take various 
phrases into consideration
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Dependency-Based Models

Dependency Format

Download and Try
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Dependency-Based Models

Dependency tree• -to-string model
Liangyou Li, Jun – Xie, Andy Way, Qun Liu. (2014). Transformation and 
Decomposition for Efficiently Implementing and Improving 
Dependency-to-String Model In Moses. In Proceedings of SSST-8.

Segmentational graph• -based model
Liangyou Li, Andy Way, – Qun Liu. (2016). Graph-Based Translation Via 
Graph Segmentation. In Proceedings of ACL.

Context• -ware segmentational graph-based model
Liangyou Li, Andy Way, – Qun Liu. (2016). Context-Aware Segmentation 
for Graph-Based Translation. Submitted to EACL 2017.

SERG• -based dependency graph-to-string model
Liangyou Li, Andy Way, – Qun Liu. (2015). Dependency Graph-to-String 
Translation. In Proceedings of EMNLP.

SNRG• -based dependency graph-to-string model
Paper in preparation–
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Dependency Format

• Using factors

– Word | POS | fid | relation

She|PRP|3|nsubj   is|VBZ|3|cop  very|RB|3|advmod  smart|JJ|-1|ROOT
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Dependency Format

moses• -graph/scripts/training/stanford-dep-2-
factor.perl

nsubj(smart-4, She-1)

cop(smart-4, is-2) 

advmod(smart-4, very-3) 

root(ROOT-0, smart-4)

She|PRP|3|ROOT is|VBZ|3|cop very|RB|3|advmod smart|JJ|-1|ROOT
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Download and Try

• Binaries, sample data, and lab instructions
– https://drive.google.com/drive/folders/0BzwIbrtQHxlLZ2hlTjVK

WnNqWkk?usp=sharing

• Source codes
– git clone https://llysuda@bitbucket.org/llysuda/moses-graph.git

Or download from my webpage:
http://www.computing.dcu.ie/~liangyouli

Please follow the instructions to 
build your models 
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