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Build translation left to right  

Select a phrase to translate 
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Build translation left to right  

Select a phrase to translate 

Find the translation for the phrase 

Add the phrase to the end of  

  the partial translation  

Mark words as translated 
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Many to one translation 
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Reordering 
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The search is directed by a weighted 
combination of various features: 
• Translation probability 
• Language model probability 
• …… 
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 Statistical Machine Translation (SMT) 

 Deep Learning (DL) and Neural Network (NN) 

o (slides taken from Kevin Duh’s presentation) 

 The Gap between DL and MT 
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www.adaptcentre.ie Logistic Regression (1-layer net) 

Function model: 𝑓(𝑥) = 𝜎(𝑤𝑇 · 𝑥) 

o Parameters: vector 𝑤 ∈  𝑅𝑑 

o 𝜎 is a non-linearity, e.g. sigmoid: 

o 𝜎(𝑧)  =  1/(1 +  𝑒𝑥𝑝 ( − 𝑧)) 

 

 

 

 

 

o Non-linearity will be important in expressiveness 

o multi-layer nets. Other non-linearities, e.g., 

o 𝑡𝑎𝑛ℎ (𝑧)  =  (𝑒𝑧 − 𝑒−𝑧)/(𝑒𝑧 + 𝑒−𝑧) 

 20 Extracted from Kevin Duh’s slides in DL4MT Winter School 



www.adaptcentre.ie 2-layer Neural Networks 

Called Multilayer Perceptron (MLP), but more like multilayer logistic regression 

21 Extracted from Kevin Duh’s slides in DL4MT Winter School 



www.adaptcentre.ie Expressive Power of Non-linearity 

• A deeper architecture is more expressive than a shallow one 

given same number of nodes [Bishop, 1995] 

o 1-layer nets only model linear hyperplanes 

o 2-layer nets can model any continuous function (given sufficient nodes) 

o >3-layer nets can do so with fewer nodes 

22 Extracted from Kevin Duh’s slides in DL4MT Winter School 



www.adaptcentre.ie What is Deep Learning? 

A family of methods that uses deep architectures to learn high-level 

feature representations 

23 Extracted from Kevin Duh’s slides in DL4MT Winter School 



www.adaptcentre.ie Automatically Trained Features in FR 

Automatically trained features make sense! [Lee et al., 2009] 

Input: Images (raw pixels) 

→ Output: Features of Edges, Body Parts, Full Faces 

24 Extracted from Kevin Duh’s slides in DL4MT Winter School 
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 Statistical Machine Translation (SMT) 

 Deep Learning (DL) and Neural Network (NN) 

 The Gap between DL and MT 
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Discrete symbols 
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Continuous vectors 
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 Word Embedding  

 Express a word in a continuous space 

 Neural Language Model 
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www.adaptcentre.ie One-Hot Vector 

• The dimension of the vector is the vocabulary size 

• Each dimension is correspondent to a word 

• Each word is represented as a vector that: 

o the element is equal to 1 at the dimension which is 

correspondent to that word 

o All the other elements are equal to 0 
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www.adaptcentre.ie One-Hot Vector: Weakness 

• The dimension is very high (equal to the vocabulary size / ≈100k) 

• Very little information is carried by a one-hot vector 

o No syntactic information 

o No semantic  information 

o No lexical information 
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www.adaptcentre.ie Distributional Semantic Models 

• Assumption: Words that are used and occur in the same contexts 

tend to purport similar meanings 

• A typical model: Context Window: 

o A word is represented as the sum/average/tf-idf of the one-hot 

vectors appearing in the windows surrounding its every 

occurrence in the corpus 

o Effective for word similarity measurement 

o LSA can be used to reduce the dimension 

• Weakness 

o Not compositional 

o Reverse Mapping is not supported 
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www.adaptcentre.ie Word2Vec: Word Embedding by Neural Networks 

• A word is represented by a dense vector (usually several 

hundreds dimensions) 

• The Word2Vec matrix are trained by a 2-layer neural network 

35 
Extracted from Christopher Moody’s slides 
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context 
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http://stats.stackexchange.com/questions/177667/inpu
t-vector-representation-vs-output-vector-
representation-in-word2vec 
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www.adaptcentre.ie Transition From Discrete Space to Continuous Space 

 Word Embedding 

Express a word in a continuous space 

 Neural Language Model 

Express a sentence in a continuous space 
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www.adaptcentre.ie Language Models 

• Given a sentence: 𝑤1𝑤2𝑤3 … 𝑤𝑛, a language model is: 

 

𝑝(𝑤𝑖| 𝑤1 … 𝑤𝑖−1) 

 

• N-gram Language Model: 

 

𝑝(𝑤𝑖| 𝑤1 … 𝑤𝑖−1) ≈ 𝑝(𝑤𝑖| 𝑤𝑖−𝑁+1 … 𝑤𝑖−1) 

 

Markov Chain Assumption 
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A part of the parameter matrix of a bigram language model 
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A part of the parameter matrix of a bigram language model 

Normalize 
on all words 
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[Bengio et al., 2003] 
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[Bengio et al., 2003] 
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Computational 
intensive 

Normalize on the 
vocabulary size 

softmax layer 

Feed Forward Neural Network LM 
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[Bengio et al., 2003] 



www.adaptcentre.ie Feed Forward Neural Network LM 

• One shortcoming of FFNN LM is that it can only take limited 

length of history, just like N-gram LM 

• An improved NN LM is proposed to solve this problem: 

Recurrent Neural Network LM 
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www.adaptcentre.ie Recurrent Neural Network LM 
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Unfold the RNN LM along the timeline: 



www.adaptcentre.ie LSTM & GRU: Improved Implementation of RNN 

• Mitigating gradient vanishing and exploding 

• Long distance dependency 
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www.adaptcentre.ie Language Model for Generation 

• Given language model 𝑝(𝑤𝑖| 𝑤1 … 𝑤𝑖−1) and a history, we can 

generate the next word with highest LM score: 
 

𝑤𝑡 =  argmax
𝑤𝑡

′∈𝑉

𝑝(𝑤𝑡
′| 𝑤1 … 𝑤𝑖−1) 
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 Neural Machine Translation (NMT) 

 Attention-based NMT 
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www.adaptcentre.ie Neural Machine Translation 

• The same things with SMT: 

o Trained with a parallel corpus 

o The input and output are word sequences 

• The difference with SMT: 

o A single, large neural network 

o All the internal computing is conducted on real values without symbols 

o No word-alignment 

o No phrase table or rule table 

o No n-gram language model 
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54 https://medium.com/@felixhill/deep-consequences-fa823a588e97#.sqlkiwvho 

<bos> 



www.adaptcentre.ie Neural Machine Translation: MT in a Continuous Space 

 Neural Machine Translation (NMT) 

 Attention-based NMT 
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www.adaptcentre.ie Weakness of the simple NMT model 

• The only connection between the source sentence and the target 

sentence is the single vector representation of the source sentence 
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• It is hard for this fix-length vector to capture the meaning of the 

variable-length sentence, especially when the sentence is very long 

• When the sentence becomes longer, the translation quality drops 

dramatically 



www.adaptcentre.ie Attention-based Model: Improvement 

• Keep the states for all words rather than the final state only 

 

• Use bi-directional RNN to replace single directional RNN 

 

• Use an attention mechanism as a soft alignment between the 

source words and target words 
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https://devblogs.nvidia.com/parallelforall/introducti
on-neural-machine-translation-gpus-part-3/ 



www.adaptcentre.ie Bi-directional RNN 

59 

https://devblogs.nvidia.com/parallelforall/introducti
on-neural-machine-translation-gpus-part-3/ 

The representation for the word 
in the context. 
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https://devblogs.nvidia.com/parallelforall/introducti
on-neural-machine-translation-gpus-part-3/ 

It contains the context information 
of the word in both sides 
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https://devblogs.nvidia.com/parallelforall/introducti
on-neural-machine-translation-gpus-part-3/ 
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https://devblogs.nvidia.com/parallelforall/introducti
on-neural-machine-translation-gpus-part-3/ 



www.adaptcentre.ie Attention-based NMT 

• The attention-based NMT is very successful 

• It’s performance has outperformed the SoA of SMT 

• Attention mechanism is used in many DL tasks, such as image 

caption generation 
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https://stackoverflo
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unsqueeze(0) 
 
1 x 1 x max_length  

Decoder+Attention 
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RNN Encoder–Decoder for Statistical 
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www.adaptcentre.ie Conclusion 

• MT is a task defined in a discrete space 

• In a deep learning framework, the MT is converted to a task 

defined in a continuous space 

• Word embedding is used to map a word to a vector 

• Recurrent Neural Network is used to model the word sequence 

• Encoder-Decoder (or Sequence-to-Sequence) model is proposed 

for neural machine translation 

• Attention-based mechanism is used to provide soft alignment for 

NMT 

• NMT has outperformed SMT and still has huge potential 
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• Subword level and character level models 

o Morphologically rich languages 

o Out-of-Vocabulary problem 

• Multitask and Multiway models 

o Sharing parameters among Multiple MT models  

o Low resource or zero-shot language pairs 

• Pure attention models 

o Higher performance 
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