

Engaging Content Engaging People

What has Deep Learning brought to Natural Language Processing?

Prof. Qun Liu, Dublin City University Deep Learning Meetup Accenture The Dock 21st March 2018

The ADAPT Centre is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

Background

- Deep Learning (DL) has brought great changes in the area of Natural Language Processing (NLP)
 - Almost all the states-of-the-art of NLP tasks have been refreshed
 - > Parsing, Translation, ...
 - Some previously difficult tasks become easy
 - Chitchat, Image caption generation
 - morphologically-rich language translation, adaptation, ...
 - Some previously impossible tasks become possible
 - Interlingua, ...

Questions

- What fundamental change has DL brought to NLP?
- What impacts have been made by this fundamental change?
- What is the weakness of DL in NLP?
- What is the future direction of NLP?

In this presentation, I will try to answer the above questions, followed by the introduction of some of our own work.

www.adaptcentre.ie

The Changes brought by DL to NLP

Our work on DL-based NLP

Weakness of DL-based NLP and Future Direction

The most Fundamental Change brought by DL to NEP

The spaces where NLP problems are defined have been moved

to:

Symbolic Discrete Spaces

Numerical Continuous Spaces

Sounds and Images as Numbers

Statistical NLP – Symbols with Numbers www.adaptcentre.ie

• HMM, MaxEnt, CRF, SCFG, SMT...

f	e	φ(f e)	lex(f e)	φ(e f)	lex(e f)	Alignment
失业 人数	unemployment figures	0.3	0.0037	0.0769	0.0018	0-0 1-1
失业 人数	number of unemployed	0.1333	0.0188	0.1025	0.0041	1-0 1-1 0- 2
失业 人数	. unemployment was	0.3333	0.0015	0.0256	6.8e-06	0-1 1-1 1- 2

Neural NLP – Pure Numbers

• Word Embeddings

Figure extracted from Christopher Moody's slides

Neural NLP – Pure Numbers

www.adaptcentre.ie

• Word Embeddings

Neural NLP – Pure Numbers

Figure from : https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

The Trend

www.adaptcentre.ie

Other Changes brought by DL to NLP

• Finer granularity

- Better generalization
- Breakdown of the boundary between modalities
- Monolithic NLP Models

Granularity Selection for Conventional NLP Models

Model	Granularity
Word-based SMT	words
Phrase-based SMT	words, phrases (grammatical & ungrammatical)
Syntax-based SMT	words, (grammatical) phrases, rules
Wordnet	synset

- A NLP model must be defined in a certain granularity
- Models of different granularities are
 - totally different
 - o not compatible with each other: PBMT and Syntactic SMT
- It's hard to integrate knowledge of other granularities into a model which is defined in a different granularity
 - None of SMT models can translate morphologically rich languages well

Granularities for Neural NLP Models

- In Neural NLP models, all linguistic units are expressed as embeddings
 - Word embeddings, sub-word em, character em
 - Phrase embeddings, sentence embeedings, ...
- Neural NLP models with different linguistic granularities are similar
- It's easy to incorporate linguistic data or knowledge in different granularities in neural NLP framework

Other Changes brought by DL to NLP

- Finer granularity
- Better generalization
- Breakdown of the boundary between modalities
- Monolithic NLP Models

Better Generalization

- Use Language Models (LMs) as an example
- In N-Gram LMs,

$$P_{bigram}(w_1 \dots w_n) = \prod_{i=1}^n p(w_i | w_{i-1})$$

- if **"loves Mary" appears 1000 times** in the training corpus but **"loves John" appears only once**, they will obtain very different bigram LM probabilities
- However, in Neural LMs, because "Mary" and "John" are very close in the embedding space, "loves Mary" and "loves John" will obtain very similar NLM probabilities

Other Changes brought by DL to NLP

- Finer granularity
- Better generalization
- Breakdown of the boundary between modalities
- Monolithic NLP Models

Breaking down the boundary between Modalities

- Traditionally NLP and Image/Speech processing are very different techniques
 - NLP is working on symbolic language data
 Image/Speech is working on continuous signal data
- By using NN, all language data are converted to numerical numbers, which is in the same form as image/speech data.
- Multimodal/cross-modal processing become straightforward and easy to implement

Image Caption Generation

f = (a, man, is, jumping, into, a, lake, .)Word Ssample U, Recurrent State \mathbf{Z}_i Attention Mechanism Attention weight a_i $\sum a_j = 1$ ₽ E ₽ Convolutional Neural Network Annotation Vectors \mathbf{h}_i

Visual Question Answering (VQA)

www.adaptcentre.ie

Welcome to the VQA Challenge 2017!

http://visualqa.org/challenge.html

Other Changes brought by DL to NLP

- Finer granularity
- Better generalization
- Breakdown of the boundary between modalities
- Monolithic NLP Models

- Traditionally, an complex NLP model is usually be divided to multiple submodels, where each submodel are trained with specific data, and optimized against its own object function. The submodels are connected in a certain structure, typically a pipeline structure.
 - The submodels are trained locally which may not lead to a global optimum.
 - Error propagations exist through the data flow.
- NN use monolithic models and can avoid the above problems → so called "end-to-end model".

Interlingua: experiences in 1989

- Makoto Nagao (Kyoto University) said: ".. when the pivot language [i.e. interlingua] is used, the results of the analytic stage must be in a form which can be utilized by all of the different languages into which translation is to take place. This level of subtlety is a practical impossibility." (Machine Translation, Oxford, 1989)
- Patel-Schneider (METAL system) said: "METAL employs a modified transfer approach rather than an interlingua. If a metalanguage [an interlingua] were to be used for translation purposes, it would need to incorporate all possible features of many languages. That would not only be an endless task but probably a fruitless one as well. Such a system would soon become unmanageable and perhaps collapse under its own weight." (A four-valued semantics for terminological reasoning, Artificial Intelligence, 38, 1989)

www.adaptcentre.ie

The Changes brought by DL to NLP

Our work on DL-based NLP

Weakness of DL-based NLP and Future Direction

Our work on DL-based NLP

- Multimodal Machine Translation
- NMT with Morphological Information
- NMT with Discourse Information
- Domain Adaptation for NMT
- Lexical Constrained Decoding for NMT

Incorporate Visual Features into NMT

- Human EN a plant steem wrapping around another one.
- Human PT caule de planta enrolando-se em outro.

Figure 1: Image extracted from Wikipedia for which there are human created captions in English and Portuguese.

Doubly-Attentive Decoder for Multi-Modal MMT

Calixto, Liu & Campbell (ACL 2017)

Local Image Features

28

www.adaptcentre.ie

Figure 2.7: Illustration of the VGG19 network architecture.

Training on $M30k_T$

${\bf English}{\rightarrow}{\bf German}$						
Model	Training data	$\mathbf{BLEU4}\uparrow$	METEOR↑	$ ext{TER} \downarrow$	chrF3	$^{\uparrow}$ (prec. / recall)
NMT PBSMT Huang et al. (2016)	$\begin{array}{l} M30k_T\\ M30k_T\\ M30k_T\\ +\ RCNN \end{array}$	$\begin{array}{c} \underline{33.7} \\ 32.9 \\ 35.1 \ (\uparrow 1.4) \\ 36.5 \ (\uparrow 2.8) \end{array}$	52.3 54.3^{\dagger} 52.2 (\downarrow 2.1) 54.1 (\downarrow 0.2)	46.7 45.1^{\dagger}	65.2 <u>67.4</u> 	(67.7 / 65.0) (66.5 / 67.5)
$\rm NMT_{\rm SRC+IMG}$	$M30k_{\rm T}$	$36.5^{\dagger\ddagger}$	55.0^\dagger	$43.7^{\dagger\ddagger}$	67.3	$(66.8 \ / \ 67.4)$
Improvements						
$\begin{array}{l} {\rm NMT}_{\rm SRC+IMG} \ {\rm vs.} \ {\rm NM}\\ {\rm NMT}_{\rm SRC+IMG} \ {\rm vs.} \ {\rm PE}\\ {\rm NMT}_{\rm SRC+IMG} \ {\rm vs.} \ {\rm Hu}\\ {\rm NMT}_{\rm SRC+IMG} \ {\rm vs.} \ {\rm Hu}\\ \end{array}$	MT BSMT lang lang (+RCNN)	$\uparrow 2.8$ $\uparrow 3.6$ $\uparrow 1.4$ $\uparrow 0.0$	$\uparrow 2.7$ $\uparrow 0.7$ $\uparrow 2.8$ $\uparrow 0.9$	$\begin{array}{c} \downarrow 3.0 \\ \downarrow 1.4 \\ \end{array}$	↑ 2.1 ↓ 0.1 	↓ 0.9 / ↑ 2.4 ↑ 0.3 / ↓ 0.1 —

Doubly-Attentive Decoder for Multi-Modal MMT

(a) Image–target word alignments.

(b) Source–target word alignments.

Figure 7.2: Visualisation of image– and source–target word alignments for the $\rm M30k_{T}$ test set.

Incorporate Global Image Features into NM Fentre.ie

Figure 2.7: Illustration of the VGG19 network architecture.

Incorporate Global Image Features into NM

(a) $\mathbf{IMG}_{\mathbf{W}}$: An encoder RNN that uses image features as words in the source sequence.

(b) $\mathbf{IMG}_{\mathbf{E}}$: Using an image to initialise the encoder hidden states.

Incorporate Global Image Features into MM

(c) IMG_D : Image as additional data to initialise the decoder hidden state s_0 .

Calixto and Liu (EMNLP 2017)

Incorporate Global Image Features into MM

${\bf English}{\rightarrow}{\bf German}$

	$\mathbf{BLEU}4\uparrow$	$\mathbf{METEOR}{\uparrow}$	$\mathbf{TER}\downarrow$	chrF3↑			
	training data: translated M30k						
PBSMT	32.9	<u>54.1</u>	45.1	67.4			
NMT	<u>33.7</u>	52.3	46.7	64.5			
Huang	35.1	52.2					
$+ \operatorname{RCNN}$	36.5	54.1					
$\mathrm{IMG}_{\mathrm{1W}}$	$37.1^{\dagger\ddagger}$ († 3.4)	54.5 [‡] († 0.4)	42.7 ^{†‡} (\$ 2.4)	66.9 (↓ 0.5)			
$\mathrm{IMG}_{\mathrm{2W}}$	$36.9^{\dagger\ddagger}$ († 3.2)	54.3 [‡] († 0.2)	$41.9^{\dagger \ddagger} (\downarrow 3.2)$	66.8 (↓ 0.6)			
IMG_E	$37.1^{\dagger\ddagger}$ († 3.4)	55.0 ^{†‡} († 0.9)	$43.1^{\dagger\ddagger}$ (\$ 2.0)	$67.6 \ (\uparrow 0.2)$			
IMG_D	$37.3^{\dagger\ddagger}$ († 3.6)	$55.1^{\dagger\ddagger}$ († 1.0)	$42.8^{\dagger\ddagger}$ (1 2.3)	$67.7 (\uparrow 0.3)$			
$\mathrm{IMG}_{\mathrm{2W+D}}$	$35.7^{\dagger\ddagger}$ († 2.0)	53.6 [‡] (↓ 0.5)	$43.3^{\dagger\ddagger}$ (\$ 1.8)	66.2 (↓ 1.2)			
$\mathrm{IMG}_{\mathrm{E+D}}$	$37.0^{\dagger\ddagger}$ († 3.3)	54.7 [‡] († 0.6)	$42.6^{\dagger\ddagger}$ (\$ 2.5)	67.2 (↓ 0.2)			
	+ back-transla	ted comparable	M30k				
PBSMT	34.0	<u>55.0</u>	44.7	<u>68.0</u>			
NMT	<u>35.5</u>	53.4	<u>43.3</u>	65.3			
$\mathrm{IMG}_{\mathrm{2W}}$	$36.7^{\dagger\ddagger}$ († 1.2)	54.6 [‡] (↓ 0.4)	42.0 ^{†‡} († 1.3)	66.8 (↓ 1.2)			
$\mathrm{IMG}_{\mathrm{E}}$	$38.5^{\dagger\ddagger}$ († 3.0)	$55.7^{\dagger\ddagger}$ († 0.9)	$41.4^{\dagger\ddagger}~(\downarrow 1.9)$	$68.3 \scriptscriptstyle{(\uparrow 0.3)}$			
$\mathrm{IMG}_{\mathrm{D}}$	$38.5^{\dagger\ddagger}$ († 3.0)	$55.9^{\dagger\ddagger}$ († 1.1)	$41.6^{\dagger\ddagger}$ (\$ 1.7)	$68.4 \ (\uparrow 0.4)$			

$\mathbf{German}{\rightarrow}\mathbf{English}$

	$\mathbf{BLEU}4\uparrow$	$\mathbf{METEOR} \uparrow$	$\mathbf{TER}\!\!\downarrow$	$chrF3\uparrow$		
	training data: translated M30k					
PBSMT	32.8	34.8	43.9	61.8		
NMT	<u>38.2</u>	<u>35.8</u>	<u>40.2</u>	<u>62.8</u>		
IMG _{2W}	39.5 [‡] († 1.3)	37.1 ^{†‡} († 1.3)	37.1 ^{†‡} (↓ 3.1)	$63.8 (\uparrow 1.0)$		
IMG_E	$41.1^{\dagger \ddagger}$ († 2.9)	$37.7^{\dagger\ddagger}$ († 1.9)	$37.9^{\dagger\ddagger}$ (\$ 2.3)	$65.7 \ (\uparrow 2.9)$		
IMG_D	41.3 ^{†‡} († 3.1)	$37.8^{\dagger\ddagger}$ († 2.0)	37.9 ^{†‡} († 2.3)	$65.7 \ (\uparrow 2.9)$		
IMG_{2W+D}	$39.9^{\dagger\ddagger}$ († 1.7)	37.2 ^{†‡} († 1.4)	$37.0^{\dagger\ddagger}$ (\downarrow 3.2)	64.4 († 1.6)		
IMG_{E+D}	$41.9^{\dagger \ddagger} (\uparrow 3.7)$	$37.9^{\dagger\ddagger}$ († 2.1)	37.1 ^{†‡} († 3.1)	$66.0 \ (\uparrow 3.2)$		
PBSMT ⁺	42.5	<u>39.5</u>	<u>35.6</u>	<u>68.7</u>		
	+ back-transla	ted comparable	M30k			
NMT	<u>42.6</u>	38.9	36.1	67.6		
IMG _{2W}	42.4 ‡ (10.2)	39.0 [‡] († 0.1)	34.7 ^{†‡} (\ 1.4)	$67.6 \ (\uparrow 0.0)$		
IMG_E	$43.9^{\dagger \ddagger} (\uparrow 1.3)$	39.7 ^{\ddagger} (\uparrow 0.8)	$34.8^{\dagger\ddagger}$ (\$ 1.3)	68.7 († 1.1)		
IMG_D	$43.4 ~^\ddagger~ (\uparrow 0.8)$	39.3 [‡] $(\uparrow 0.4)$	35.2 [‡] (\downarrow 0.9)	$67.8 \ (\uparrow 0.2)$		

Our work on DL-based NLP

- Multimodal Machine Translation
- NMT with Morphological Information
- NMT with Discourse Information
- Domain Adaptation for NMT
- Lexical Constrained Decoding for NMT

- Chinese and English are morphologically poor languages
- Unlike Chinese and English, a number of languages have very rich morphology:

Word	Translation
Turkish:	
terbiye	good manners
terbiye+siz	rude
terbiye+siz+lik	rudeness
terbiye+siz+lik+leri	their rudeness
terbiye+siz+lik+leri+nden	from their rudeness
terbiye+siz+lik+leri+nden+mis	it was because of their rudeness

37

- Morphologically rich languages (MRLs) are hard to model in SMT because (i) a single word may have a large number of variations (>1000); (ii) the vocabulary size is very big; (iii) the data scarcity / OOV problem becomes severe.
- In SMT framework, although a lot of ideas have been proposed for MRL translation, none of them can provide a successful solution.

- In NMT framework, two solutions are proposed to deal with MRLs both of which are elegant and obtained preliminary success:
 - Character level models
 - Subword level models
- Character level models are promising but also computationally high cost
- Subword level models can reach a comprise between performance and complexity

- The most popular subword level model are Byte Pair Encoding (BPE) proposed by Rico et al. (2016)
- Google researchers used a WordPiece model in Google NMT system
- Both BPE and WordPiece generate many mistakes in their subword segmentation
- We proposed a novel (almost) unsupervised model to generate better morpheme (subword) segmentation and archived better MT quality

Dynamic Programming Morpheme Segmentation

www.adaptcentre.ie

$$score = \sum_{s} imp(n) \times freq_{n_gram} freq(s), imp(n) = \frac{count(n_gram)}{\sum_{n'=1}^{N} (n'_gram)}$$
Ref: Peyman Passban's PhD thesis

41

Scheme	Segmented Sequence
Turkish Seq.	[görünüşe] ₁ [göre] ₂ [söylemeyeceğinden] ₃ [çok] ₄ [eminsin] ₅
bpe-5K	[görünüş•e] ₁ [göre] ₂ [söylemey•eceğ•inden] ₃ [çok] ₄ [emin•sin] ₅
bpe-30K	[görünüşe] ₁ [göre] ₂ [söylemey•eceğinden] ₃ [çok] ₄ [eminsin] ₅
bpe-50K	[görünüşe] ₂ [göre] ₂ [söylemey•eceğinden] ₃ [çokeminsin] _{4,5}
$Our \ model$	$[g\"oru\bulletnu orus\bullete]_1 [gor\bullete]_2 [soyle\bulletmey\bulletecegi\bulletnden]_3 [cok]_4 [e\bulletm\bulletin\bulletsin]_5$
Translation	$[\text{seems like}]_{1,2}$ [you've made sure] _{4,5} [to not tell] ₃
Turkish Seq.	[firtinayi] ₁ [buraya] ₂ [getirecek] ₃
bpe-5K	$[firt \bullet in \bullet ayi]_1 [buraya]_2 [getir \bullet ecek]_3$
bpe-30K	$[firtm \bullet ayi]_1 [buraya]_2 [getirecek]_3$
bpe-50K	$[firtm \bullet ayi]_1 [buraya]_2 [getirecek]_3$
$Our \ model$	$[firt \bullet in \bullet ayi]_1 [bura \bullet y \bullet a]_2 [get \bullet ir \bullet ecek]_3$
Translation	$[it's gonna bring]_3 [that storm]_1 [here]_2$

	Model	Source	Target	Direction	BLEU
	Chung et al. (2016)	bp	bp		20.47
	Chung et al. (2016)	bp	char		21.33
	Firat et al. (2016a)	bp	bp	En→De	20.59
	Sennrich et al. $(2016b)$	C2/50K	C2/50K		22.8
	Our model	dp	dp		23.41
SL	Chung et al. (2016)	bp	bp		25.30
Ħ	Chung et al. (2016)	bp	char		26.00
\uparrow	Firat et al. $(2016a)$	bp	bp	En→Ru	19.39
Εn	Sennrich et al. $(2016b)$	C2/50K	C2/50K		20.90
	Our model	dp	dp		24.71
	Chung et al. (2016)*	bp	char		18.01
	Our model	bp	bp	En→Tr	16.76
	Our model	dp	dp		21.05
	Costa-jussà and Fonollosa (2016)	word	word		18.83
	Costa-jussà and Fonollosa (2016)	char	word		21.40
	Firat et al. $(2016a)$	bp	bp	DovEn	24.00
	Lee et al. (2016)	bp	char	Dе→гл	25.27
	Lee et al. (2016)	bp	char		25.83
Εn	Our model	dp	dp		27.13
Ť	Firat et al. (2016a)	bp	bp		22.40
βL	Lee et al. (2016)	bp	char	$\mathbf{D}_{\mathbf{M}} \to \mathbf{F}_{\mathbf{M}}$	22.83
Ŧ	Lee et al. (2016)	char	char	Ku→En	22.73
	Our model	dp	dp		23.07
	Chung et al. (2016)*	bp	char		23.11
	Our model	bp	bp	Tr→En	23.17
	Our model	dp	dp		23.46

NMT with different subword segmentation methods

43

Our work on DL-based NLP

- Multimodal Machine Translation
- NMT with Morphological Information
- NMT with Discourse Information
- Domain Adaptation for NMT
- Lexical Constrained Decoding for NMT

NMT with Discourse Information

- Most MT systems translate sentences separately without considering relations between sentences (discourse information)
 - Coherence problem
 - Cohesion problem
 - Consistency problem
- It is very hard and complex to incorporate discourse information into an SMT system
- A small number of work has been conducted discourse level translation under SMT framework but not very successful

NMT with Discourse Information

 We recent proposed an idea: Exploiting Cross-Sentence Context for NMT

Wang et al. (EMNLP 2017)

www.adaptcentre.ie

NMT with Discourse Information

#	System	MT05	MT06	MT08	Ave.	Δ
1	Moses	33.08	32.69	23.78	28.24	-
2	NEMATUS	34.35	35.75	25.39	30.57	_
3	+Init _{enc}	36.05	36.44†	26.65†	31.55	+0.98
4	+Init _{dec}	36.27	36.69†	27.11^{\dagger}	31.90	+1.33
5	+Init _{enc+dec}	36.34	36.82†	27.18 [†]	32.00	+1.43
6	+Auxi	35.26	36.47†	26.12 [†]	31.30	+0.73
7	+Gating Auxi	36.64	37.63†	26.85 [†]	32.24	+1.67
8	+Initenc+dec+Gating Auxi	36.89	37.76†	27.57 [†]	32.67	+2.10

Our work on DL-based NLP

- Multimodal Machine Translation
- NMT with Morphological Information
- NMT with Discourse Information
- Domain Adaptation for NMT
- Lexical Constrained Decoding for NMT

 Domain Adaptation is a common problem in MT application scenario where we have a large amount of general domain (GD) data but only a limited amount of in-domain (ID) data

- Many techniques have been proposed for domain adaptation in SMT
- However in NMT domain adaptation becomes not so difficulty: simply training an GD NMT system on ID corpus plus ensemble seems work well
- We proposed domain adaptation ideas for NMT in two specific use scenarios.

• Domain Adaptation for NMT with pre-trained large scale word embedding

Zhang, et al. (COLING 2016a) Jian Zhang's PhD Thesis

	Validation Set	Test Set
Baselines		
Baseline (KN5)	148.007	141.186
Baseline (<i>word2vec</i>)	121.871	117.730
Baseline (Standard)	92.983	89.295
Adaptation on Word Representations		
WVC	95.149	91.414
WVS	88.398	85.231
Adaptation on Context Representations		
CVC	90.337	86.168
WCVC	88.551	85.067
CVS	88.244	84.721
WCVS	90.293	86.679
Gated Adaptation		
WVG	90.937	87.853
CVG	90.301	86.832
DAGRU	86.247	81.900

Table 2: LM perplexity on Penn Treebank corpus.

System	NIST 2002	NIST 2004	NIST 2005
PBSMT	33.42	32.36	30.11
NMT	34.51	35.02	31.46
GDA NMT (glove_840b)	36.07	35.99 ‡	31.73
GDA NMT (word2vec)	35.63	35.84‡	31.88‡

Table 4.8: BLEU scores for NMT adaptation. We use \ddagger to indicate statistically significant (Koehn 2004) improvements upon the NMT baseline model. The significance testing uses bootstrapping method at the p = 0.01 level with 1,000 iterations.

Topic Informed Encoder

• Topic-Informed Neural Machine Translation

Topic Informed Decoder

β_1^T β_2^T β_3^T $\overrightarrow{h_3^S}$ $\overrightarrow{h_1^S}$ $\overrightarrow{h_{4}^{S}}$ $h_2^{\acute{S}}$ t_3 t_1 t_2 t_4 $\overleftarrow{h_1^S}$ $\overleftarrow{h_3^S}$ $\overleftarrow{h_A^S}$ $\overleftarrow{h_2^S}$ β_1^S β_2^S β_3^S β_4^S h_1^T $\alpha_{1,2}$ eZhang, et al. (COLING 2016b) $topic_c_3$ Jian Zhang's PhD Thesis

Systems	NIST 2002 (dev)	NIST 2004 (test)	NIST 2005 (test)
SMT	33.42	32.36	30.11
NMT	34.33	34.76	31.12
Source Topic-Informed NMT (40)	35.39	35.17†	31.95‡
Target Topic-Informed NMT (10)	36.31	35.43‡	32.50‡
Topic-Informed NMT (40,10)	34.86	35.91‡	32.79‡

Table 2: BLEU scores of the trained SMT and NMT models. We use \ddagger and \ddagger to indicate significant (Koehn, 2004) improvements upon the baseline NMT using bootstrapping method at the level p = 0.01 and p = 0.05 level, respectively (with 1000 iterations).

	Baseline NMT	Topic-Informed NMT
NIST 2004	2.3%	1.9%
NIST 2005	2.7%	2.3%

Table 3: The percentage of *UNK* tokens produced in translation outputs by baseline NMT and topic-informed NMT systems.

Our work on DL-based NLP

- Multimodal Machine Translation
- NMT with Morphological Information
- NMT with Discourse Information
- Domain Adaptation for NMT
- Lexical Constrained Decoding for NMT

Lexical Constrained Decoding for NMT

- In some scenario, we expect the MT system to generate translations with specific constraints:
 - Term translation
 - Pick-Revise-Translation loop for post-editing
- It is quite complex to implement this idea in SMT
- We proposed a simple and effective approach to implement this in NMT framework

Lexical Constrained Decoding for NMT

www.adaptcentre.ie

Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search Hokamp & Liu (ACL 2017)

ITERATION	0	1	2	3
Strict Constraints				
EN-DE	18.44	27.64 (+9.20)	36.66 (+9.01)	43.92 (+7.26)
EN-FR	28.07	36.71 (+8.64)	44.84 (+8.13)	45.48 +(0.63)
EN-PT*	15.41	23.54 (+8.25)	31.14 (+7.60)	35.89 (+4.75)
Relaxed Constraints				
EN-DE	18.44	26.43 (+7.98)	34.48 (+8.04)	41.82 (+7.34)
EN-FR	28.07	33.8 (+5.72)	40.33 (+6.53)	47.0 (+6.67)
EN-PT*	15.41	23.22 (+7.80)	33.82 (+10.6)	40.75 (+6.93)

Table 1: Results for four simulated editing cycles using WMT test data. EN-DE uses *newstest2013*, EN-FR uses *newstest2014*, and EN-PT uses the Autodesk corpus discussed in Section 4.2. Improvement in BLEU score over the previous cycle is shown in parentheses. * indicates use of our test corpus created from Autodesk post-editing data.

Lexical Constrained Decoding for NMT

System	BLEU	
EN-DE		
Baseline	26.17	
Random	25.18 (-0.99)	
Beginning	26.44 (+0.26)	
GBS	27.99 (+1.82)	
EN-FR		
Baseline	32.45	
Random	31.48 (-0.97)	
Beginning	34.51 (+2.05)	
GBS	35.05 (+2.59)	
EN-PT		
Baseline	15.41	
Random	18.26 (+2.85)	
Beginning	20.43 (+5.02)	
GBS	29.15 (+13.73)	

Table 2: BLEU Results for EN-DE, EN-FR, and EN-PT terminology experiments using the Autodesk Post-Editing Corpus. "Random' indicates inserting terminology constraints at random positions in the baseline translation. "Beginning" indicates prepending constraints to baseline translations.

www.adaptcentre.ie

www.adaptcentre.ie

The Changes brought by DL to NLP

Our work on DL-based NLP

Weakness of DL-based NLP and Future Direction

Weakness of DL-based NLP and Future Direction

- DL has totally changed the face of NLP research and provide powerful driving force for NLP
- In my personal opinion, DL-based NLP still has huge potential and is far from its plateau
- Weakness of DL-based NLP is also obvious:
 - Does not work with small data
 - Unawareness of semantic:
 - Most NLP system has no idea of what the language is talking about
 - There is no general techniques for task-oriented NLP

Weakness of DL-based NLP and Future Direction

- Future direction:
 - Apply more powerful DL technologies to solve NLP tasks
 - Reinforcement Learning
 - > Adversarial Learning
 - General technologies to incorporate human knowledge to DL-based NLP
 - General technologies to incorporate semantics into DL-based NLP

Engaging Content Engaging People

Thanks you for your attention

qun.liu@dcu.ie