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Background

* Deep Learning (DL) has brought great changes in the
area of Natural Language Processing (NLP)

o Almost all the states-of-the-art of NLP tasks have been
refreshed

> Parsing, Translation, ...

o Some previously difficult tasks become easy

> Chitchat, Image caption generation

> morphologically-rich language translation, adaptation, ...

o Some previously impossible tasks become possible

> Interlingua, ...




Questions

* What fundamental change has DL brought
to NLP?

* What impacts have been made by this
fundamental change?

* What is the weakness of DL in NLP?
* What is the future direction of NLP?

In this presentation, | will try to answer the
above questions, followed by the introduction
of some of our own work.
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The most Fundamental Change brought by DL to"Nt=P

The spaces where NLP problems are defined
have been moved
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Sounds and Images as Numbers
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Language as Symbols

Maoooa YK mmomoujj" Cylad

5

A LML oYU Lenguaje
Langage gl IR E‘{En
g
HIY 33%1 Ngén ngir 3 . 1y

Linguagem Wika @Q|{| NN
Sprache 1&73= [N# Bahasa Ao




Statistical NLP — Symbols with Numbers =

* HMM, MaxEnt, CRF, SCFG, SMT...
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Neural NLP — Pure Numbers

* Word Embeddings
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8 Figure extracted from Christopher Moody’s slides m§



Neural NLP — Pure Numbers

* Word Embeddings




Neural NLP — Pure Numbers
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The Trend
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Other Changes brought by DL to NLP e

* Finer granularity

* Better generalization

* Breakdown of the boundary between modalities
* Monolithic NLP Models

12



Granularity Selection for Conventional NLP Modets*

Word-based SMT words

Phrase-based SMT words, phrases (grammatical & ungrammatical)

Syntax-based SMT words, (grammatical) phrases, rules
Wordnet synset

* A NLP model must be defined in a certain granularity
* Models of different granularities are
o totally different
o not compatible with each other: PBMT and Syntactic SMT
* It’s hard to integrate knowledge of other granularities into a
model which is defined in a different granularity

o None of SMT models can translate morphologically rich languages well
P



Granularities for Neural NLP Models

* |[n Neural NLP models, all linguistic units are
expressed as embeddings
o Word embeddings, sub-word em, character em
o Phrase embeddings, sentence embeedings, ...

* Neural NLP models with different linguistic
granularities are similar

* |t's easy to incorporate linguistic data or
knowledge in different granularities in neural
NLP framework

. AL



Other Changes brought by DL to NLP e

* Finer granularity

* Better generalization

* Breakdown of the boundary between modalities
* Monolithic NLP Models
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Better Generalization

* Use Language Models (LMs) as an example
* |In N-Gram LMs,

16

n
Pbigram(Wl W) = Hp(wilwi—l)
=1

if “loves Mary” appears 1000 times in the training
corpus but “loves John” appears only once, they
will obtain very different bigram LM probabilities

However, in Neural LMs, because “Mary” and “John”
are very close in the embedding space, “loves
Mary” and “loves John” will obtain very similar
NLM probabilities ey N




Other Changes brought by DL to NLP e

* Finer granularity

* Better generalization

* Breakdown of the boundary between modalities
* Monolithic NLP Models
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Breaking down the boundary between Modalitreg<*

* Traditionally NLP and Image/Speech processing
are very different techniques
o NLP is working on symbolic language data
o Image/Speech is working on continuous signal data

* By using NN, all language data are converted to
numerical numbers, which is in the same form
as image/speech data.

* Multimodal/cross-modal processing become
straightforward and easy to implement

: AL



Image Caption Generation
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19 Figure from: https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/




Visual Question Answering (VQA)

Welcome to the VQA Challenge 2017!

bananas

What is the mustache
made of?

http://visualga.org/challenge.html ﬂ
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Other Changes brought by DL to NLP e

* Finer granularity

* Better generalization

* Breakdown of the boundary between modalities
* Monolithic NLP Models
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Monolithic NLP Models

* Traditionally, an complex NLP model is usually be
divided to multiple submodels, where each
submodel are trained with specific data, and
optimized against its own object function. The
submodels are connected in a certain structure,
typically a pipeline structure.

o The submodels are trained locally which may not lead
to a global optimum.

o Error propagations exist through the data flow.

* NN use monolithic models and can avoid the above
problems =» so called “end-to-end model”.

. AL




Interlingua: experiences in 1989

* Makoto Nagao (Kyoto University) said: “.. when the pivot
language [i.e. interlingua] is used, the results of the analytic
stage must be in a form which can be utilized by all of the
different languages into which translation is to take place. This
level of subtlety is a practical impossibility.” (Machine Translation,
Oxford, 1989)

* Patel-Schneider (METAL system) said: “METAL employs a
modified transfer approach rather than an interlingua. If a meta-
language [an interlingua] were to be used for translation
purposes, it would need to incorporate all possible features of
many languages. That would not only be an endless task but
probably a fruitless one as well. Such a system would soon
become unmanageable and perhaps collapse under its own
weight.” (A four-valued semantics for terminological reasoning,
Artificial Intelligence, 38, 1989)

o1y
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Our work on DL-based NLP
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Multimodal Machine Translation
NMT with Morphological Information
NMT with Discourse Information
Domain Adaptation for NMT

Lexical Constrained Decoding for NMT




Incorporate Visual Features into NMT s

Figure 1: Image extracted from
Wikipedia for which
there are human cre-
ated captions in English
and Portuguese.

26

e Human EN — a plant steem wrapping around another one.

e Human PT — caule de planta enrolando-se em outro.

e MT PT — Uma fabrica steem embalagem em torno de um outro.

-

\

factory, industrial plant

packaging, wrapping a gift

out-of-vocabulary




Doubly-Attentive Decoder for Multi-Modal- N
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27 Calixto, Liu & Campbell (ACL 2017)



Local Image Features
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Figure 2.7: Illustration of the VGG19 network architecture.ly
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Doubly-Attentive Decoder for Multi-Modal-NM ¥
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Training on M30k;

English—German

Model Training BLEU47 METEORT TER| chrF371 (prec. / recall)

data
NMT M30ky 33.7 52.3 46.7 65.2 (67.7 / 65.0)
PBSMT M30ky 32.9 54.31 4511 67.4 (66.5 /67.5)
Huang et al. (2016) M30ky 35.1 (11.4) 522 (]l 21) - »

+ RCNN 36.5 (12.8) 54.1 (L0.2) _ _ -
NMTsroema M30kp 36.51 55.01 43.7" 67.3 (66.8 / 67.4)
Improvements
NI\ITSRC-H.\IG vs. NMT 1 2.8 I 2.7 3.0 2.1 l 0.9 / T 2.4
NMTsrcseme vs. PBSMT T 3.6 T 0.7 L 1.4 0.1 T0.3 / 1 0.1
NMTsroemie vs. Huang T 1.4 T 2.8 = _— -
NMTsgresme vs. Huang (+R('.\IN) T 0.0 17 0.9 —_ —_ —




Doubly-Attentive Decoder for Multi-Modal-NM ¥
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(a) Image-target word alignments.

(b) Source-target word alignments.

Figure 7.2: Visualisation of image- and source target word alignments for the
M30kt test set.
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Incorporate Global Image Features into N
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Incorporate Global Image Features into N

encoder RNN
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kitten in the snow

(a) IMGw. An encoder RNN that uses image

features as words in the source sequence.

Calixto and Liu (EMNLP 2017)
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encoder RNN ‘h_
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kitten in the snow

(h) IMGEg: Using an image to initialise the
encoder hidden states.




Incorporate Global Image Features into N

encoder R_NE_

m}:ﬁ@ decoder RNN

9 [ 69 R Gl

A kitten in the snow

(¢) IMGp: Image as additional data to
initialise the decoder hidden state sg.

Calixto and Liu (EMNLP 2017)
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Incorporate Global Image Features into N

English— German

BLEU% METEOR?T TER| chrF371

training data: translated M30k

PBSMT 329 4.1 45.1

=)
-1
Vi

NMT 33.7 52.3 46.7 64.5
Huang 35.1 52.2
+ RCNN  36.5 54.1

IMGiw 371" s 545 % poay 427 (24 66.9 (1 0s)
IMGoyw 36.91F (132 54.3 1 (+ 0.2) 41.9'% [ 42 66.8 (1 0.6)
IMGg 3711 154 55.0M o9y 4311 (20) 67.6 (102
IMGp 37.3" (136 55.11 (1 1.0) 42.8™ (125 67.7 (10
IMGowsp 35.7F (1200 53.6% o5 4337 (18 66.2 (12
IMGgap  37.0% (133 54.7% hos 426W (25 67.2 (o2
+ back-translated comparable M30k
PBSMT  34.0 55.0 44.7 68.0

NMT 35.5 53.4 43.3 65.3

IMGow  36.7 (1120 5467 oy 4207 (13 66.8 (12
IMGpg 38.5M 50y 55.7M 109y 41.4™ (19 68.3 (03
IMGp  38.5™ 50y 55.9T 10y 416 (17 68.4 (10
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Incorporate Global Image Features into N

German— English

BLEU? METEOR?* TER.| chrF37

training data: translated M30k
PBSMT 328 34.8 43.9 61
NMT 38.2 35.8 40.2 (2.8
IMGowy 3951 (1 1.3) 37.1% (1 1.3) 37.11% (131 03.8 (1.0
IMGg 41117 200 377 19y 379 (123 65.7 (1 29)
IMGp  41.3% (1s0) 37.8% (120) 37.9M (125 65.7 1 29)
IMGowsp 3997 ¢ 1n 3720 114y 37.0M (1 32) 644 (116
IMGgsp  41.9 (57 379" 2y 3711 (50 66.0 (132
PBSMT™* 425 39.5 35.6 68.7

+ back-translated comparable M30k
NMT 42.6 38.9 36.1 67.0
IMGow 424 % oz 39.0% 0y 34.7H (14 67.6 100
MG 43.9™ (115 39.7 % 0w 348 (15 68.7 (11
IMGp 434 %09 393% 0y 35.2%gue 678 0o
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Our work on DL-based NLP
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Multimodal Machine Translation

NMT with Morphological Information
NMT with Discourse Information
Domain Adaptation for NMT

Lexical Constrained Decoding for NMT




NMT with Morphological Information

www.adaptcentre.ie

* Chinese and English are morphologically poor

languages

* Unlike Chinese and English, a number of
languages have very rich morphology:

Word Translation
Turkish:

terbiye good manners
terbiye+-siz rude
terbiye-+-siz+lik rudeness
terbiye+-siz+lik+leri their rudeness

terbiye+siz+lik+leri+nden
terbiye+siz+lik+leri+nden+mis

from their rudeness
it was because of their rudeness

37




NMT with Morphological Information

* Morphologically rich languages (MRLs) are hard
to model in SMT because (i) a single word may
have a large number of variations (>1000);

(ii) the vocabulary size is very big; (iii) the data
scarcity / OOV problem becomes severe.

* |[n SMT framework, although a lot of ideas have
been proposed for MRL translation, none of
them can provide a successful solution.

o1y
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NMT with Morphological Information

39

In NMT framework, two solutions are proposed
to deal with MRLs both of which are elegant and
obtained preliminary success:

o Character level models

o Subword level models

Character level models are promising but also
computationally high cost

Subword level models can reach a comprise
between performance and complexity
o1y



NMT with Morphological Information

* The most popular subword level model are Byte
Pair Encoding (BPE) proposed by Rico et al.
(2016)

* Google researchers used a WordPiece model in
Google NMT system

* Both BPE and WordPiece generate many
mistakes in their subword segmentation

* We proposed a novel (almost) unsupervised
model to generate better morpheme (subword)
segmentation and archived better MT quality

: AL



NMT with Morphological Information

Dynamic Programming Morpheme Segmentation

count(n_gram)

Zg,ﬂ(n’_gram)

score = Z imp(n)Xfreqn_gramfreq(s), imp(n) =

S
41

Ref: Peyman Passban’s PhD thesis



NMT with Morphological Information

Scheme Segmented Sequence

Turkish Seq. |[goriiniise], [gore], [soylemeyeceginden]; [¢ok], [eminsin];
bpe-5K [goriiniigee|; [gorel, [soylemeyeecegeinden|s [¢ok|s; [eminesin];
bpe-30K [goriiniige|; [gore|, [sOylemeyeeceginden]; [¢ok|; [eminsin]s
bpe-50K [goriiniige, [gore], [sOylemeyeeceginden]; [gokeminsin], 5

Our model  [goriientigee|, [goree|, [sOyleemeyeecegienden|; [cok]; [eemeinesin];
Translation  [seems like|, » [you’ve made surel, 5 [to not tell|;

Turkish Seq. |[firtinayi]; [burayal, [getirecek]s

bpe-5K [firteineayi|, [burayal, [getireecek];
bpe-30K (firtineayi], [burayal, [getirecek]s
bpe-50K [firtineay1], [burayal, [getirecek];

Our model  [firtemeay1|; [buraeyeal, [geteireecek];
Translation  [it’s gonna bring|; [that storm]|; [here],

42




NMT with Morphological Information

Model Source Target Direction BLEU
Chung et al. (2016) bp bp 20.47
Chung et al. (2016) bp char 21.33
Firat et al. (2016a) bp bp En—De 20.59
Sennrich et al. (2016b) C2/50K C2/50K 22.8
Our model dp dp 23.41

é Chung et al. (2016) bp bp 25.30

S Chung et al. (2016) bp char 26.00

1 Firat et al. (2016a) bp bp En—Ru 19.39

5 Sennrich et al. (2016b) C2/50K C2/50K 20.90
Our model dp dp 24.71 .
Chung et al. (2016)* bp char 18.01 NMT with
Our model bp bp En—Tr 16.76 different
Our model dp dp 21.05 subword
Costa-jussa and Fonollosa (2016) word word 18.83 :
Costa-jussa and Fonollosa (2016)  char word 21.40 segmentation
Firat et al. (2016a) bp bp DesEn 24.00 methods
Lee et al. (2016) bp char 25.27
Lee et al. (2016) bp char 25.83

5 Our model dp dp 27.13

1 Firat et al. (2016a) bp bp 22.40

= Lee et al. (2016) bp char B 22.83

S Lee et al. (2016) char char ' 22.73
Our model dp dp 23.07

Chung et al. (2016)* bp char 23.11
Our model bp bp Tr—En 23.17 “
43 Our model dp 23.46 ‘

dp




Our work on DL-based NLP
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Multimodal Machine Translation

NMT with Morphological Information
NMT with Discourse Information
Domain Adaptation for NMT

Lexical Constrained Decoding for NMT




NMT with Discourse Information

* Most MT systems translate sentences separately
without considering relations between sentences
(discourse information)

o Coherence problem
o Cohesion problem
o Consistency problem

* |tis very hard and complex to incorporate discourse
information into an SMT system

* A small number of work has been conducted

discourse level translation under SMT framework

but not very successful |
o1y
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NMT with Discourse Information

* We recent proposed an idea:
Exploiting Cross-Sentence Context for NMT

o o
document RNN. act.
sentence RNN. act. act.|
.
XK Xin-] @— Q
(a) standard (b) decoder with (c) decoder with
decoder auxiliary context gating auxiliary context

Wang et al. (EMNLP 2017)

46 T



NMT with Discourse Information

47

www.adaptcentre.ie

# | System MTO05 | MT06 MTO8 Ave. A
1 | MOSES 33.08 | 3269 2378 28.24 -
2 | NEMATUS 3435 | 3575 2539 3057 | -
3 | +Init., 36.05 | 36.447 26.65" 31.55 | +0.98
4 | +Inity,. 36.27 | 36.69" 27.117 3190 | +1.33
5 | +Init.c,gec 36.34 | 36.827 27.18" 32.00 | +1.43
6 | +Auxi 3526 | 36477 26.127 31.30 | +0.73
7 | +Gating Auxi 36.64 | 37.637 26.857 3224 | +1.67
8 | +Initencidec+Gating Auxi | 36.89 | 37.76' 27.57"  32.67 | +2.10




Our work on DL-based NLP
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NMT with Morphological Information
NMT with Discourse Information
Domain Adaptation for NMT

Lexical Constrained Decoding for NMT




Domain Adaptation for NMT

* Domain Adaptation is a
common problem in MT
application scenario
where we have a large
amount of general
domain (GD) data but
only a limited amount of
in-domain (ID) data

49




Domain Adaptation for NMT

* Many techniques have been proposed for
domain adaptation in SMT

* However in NMT domain adaptation becomes
not so difficulty: simply training an GD NMT
system on ID corpus plus ensemble seems work

well

* We proposed domain adaptation ideas for NMT
in two specific use scenarios.

. o1y




Domain Adaptation for NMT

* Domain Adaptation for NMT with pre-trained
large scale word embedding

® ® ® ®
Yol Yoah Yoar Yo

® o[ © ©

T 7 @ X

QR A QO O
Zhang, et al. (COLING 2016a)

Jian Zhang’s PhD Thesis
51 g m “



Domain Adaptation for NMT

Validation Set  Test Set

52

Baselines

Baseline (KN5) 148.007 141.186
Baseline (word2vec) 121.871 117.730
Baseline (Standard) 92.983 89.295

Adaptation on Word Representations

WVC 95.149 91.414

WVS 88.398 85.231

Adaptation on Context Representations

CVC 90.337 86.168

WCVC 88.551 85.067

CVS 88.244 84.721

WCVS 90.293 86.679

Gated Adaptation

WVG 90.937 87.853

CVG 90.301 86.832

DAGRU 86.247 81.900

Table 2: LM perplexity on Penn Treebank corpus.




Domain Adaptation for NMT

System NIST 2002 NIST 2004 NIST 2005
PBSMT 33.42 32.36 30.11
NMT 34.51 35.02 31.46
GDA NMT (glove_840b) 36.07 35.99:1 31.73
GDA NMT (word2vec) 35.63 35.84% 31.881

Table 4.8: BLEU scores for NMT adaptation. We use | to indicate statistically significant (Koehn
2004) improvements upon the NMT baseline model. The significance testing uses bootstrapping
method at the p = 0.01 level with 1,000 iterations.

53 T



Domain Adaptation for NMT

* Topic-Informed Neural Machine Translation

Topic Informed Encoder Topic Informed Decoder

¥
— ta
hP
g5 hi

Zhang, et al. (COLING 2016b)

Jian Zhang’s PhD Thesis
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Domain Adaptation for NMT

www.adaptcentre.ie

Systems NIST 2002 (dev) | NIST 2004 (test) | NIST 2005 (test)
SMT 33.42 32.36 30.11
NMT 34.33 34.76 31.12
Source Topic-Informed NMT (40) 35.39 35.171 31.951
Target Topic-Informed NMT (10) 36.31 35.43¢ 32.50%
Topic-Informed NMT (40,10) 34.86 35911 32.79%

Table 2: BLEU scores of the trained SMT and NMT models. We use I and t to indicate significant (Koehn, 2004) improve-
ments upon the baseline NMT using bootstrapping method at the level p = 0.01 and p = 0.05 level, respectively (with 1000
iterations).

Baseline NMT | Topic-Informed NMT
NIST 2004 2.3% 1.9%
NIST 2005 2.7% 2.3%

Table 3: The percentage of UNK tokens produced in translation outputs by baseline NMT and topic-informed NMT systems.

55 T



Our work on DL-based NLP
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NMT with Discourse Information
Domain Adaptation for NMT

Lexical Constrained Decoding for NMT




Lexical Constrained Decoding for NMT e

* |n some scenario, we expect the MT system to
generate translations with specific constraints:

o Term translation
o Pick-Revise-Translation loop for post-editing
* |tis quite complex to implement this idea in
SMT

* We proposed a simple and effective approach to
implement this in NMT framework

e O

57 w‘




Lexical Constrained Decoding for NMT e

Constraint 1 Constraint 2

<S> Thre Rechte | miissen vor threr Abreise | geschiitzt | werden . </S>

Start

r““'l
_____ —— )
v —> ﬂH—h: 1
,"’ . ___-'
- Continue - |
—_—
_— e E

."’"
vE
v

r-—--»"
P
I
s 1
H—

° ° ° ° ° IS ' ° ° ° °
<S> Start Continue Continue Generate Generate  Start Continue Generate Generate </S>

Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search

Hokamp & Liu (ACL 2017) “
58



Lexical Constrained Decoding for NMT e

ITERATION 0 1 2 3

Strict Constraints

EN-DE 18.44 27.64 (+9.20) 36.66 (+9.01) 43.92 (+7.26)
EN-FR 28.07 36.71 (+8.64) 44 .84 (+8.13) 45.48 +(0.63)
EN-PT* 15.41 23.54 (+8.25) 31.14 (+7.60) 35.89 (+4.75)
Relaxed Constraints

EN-DE 18.44 26.43 (+7.98) 34.48 (+8.04) 41.82 (+7.34)
EN-FR 28.07 33.8 (+5.72) 40.33 (+6.53) 47.0 (+6.67)
EN-PT* 15.41 23.22 (+7.80) 33.82 (+10.6) 40.75 (+6.93)

Table 1: Results for four simulated editing cycles using WMT test data. EN-DE uses newstest2013, EN-FR uses newstest2014,
and EN-PT uses the Autodesk corpus discussed in Section 4.2. Improvement in BLEU score over the previous cycle is shown
in parentheses. * indicates use of our test corpus created from Autodesk post-editing data.
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System BLEU
EN-DE

Baseline 26.17
Random 25.18 (-0.99)
Beginning 26.44 (+0.26)
GBS 27.99 (+1.82)
EN-FR

Baseline 32.45
Random 31.48 (-0.97)
Beginning 34.51 (+2.05)
GBS 35.05 (+2.59)
EN-PT

Baseline 15.41
Random 18.26 (+2.85)
Beginning 20.43 (+5.02)
GBS 29.15 (+13.73)

Table 2: BLEU Results for EN-DE, EN-FR, and EN-PT ter-
minology experiments using the Autodesk Post-Editing Cor-
pus. “Random’ indicates inserting terminology constraints
at random positions in the baseline translation. “Beginning”
indicates prepending constraints to baseline translations.
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The Changes brought by DL to NLP

Our work on DL-based NLP
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Weakness of DL-based NLP and Future Directiorm

* DL has totally changed the face of NLP research
and provide powerful driving force for NLP

* |n my personal opinion, DL-based NLP still has
huge potential and is far from its plateau

* Weakness of DL-based NLP is also obvious:
o Does not work with small data

o Unawareness of semantic:

> Most NLP system has no idea of what the language is
talking about

> There is no general techniques for task-oriented NLP
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Weakness of DL-based NLP and Future Directiorm

* Future direction:

o Apply more powerful DL technologies to solve NLP
tasks
> Reinforcement Learning

> Adversarial Learning

o General technologies to incorporate human
knowledge to DL-based NLP

o General technologies to incorporate semantics into
DL-based NLP
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