
What has Deep Learning brought to 
Natural Language Processing?

Prof. Qun Liu, Dublin City University
Deep Learning Meetup Accenture The Dock
21st March 2018

The ADAPT Centre is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.



www.adaptcentre.ieBackground

• Deep Learning (DL) has brought great changes in the
area of Natural Language Processing (NLP)
o Almost all the states-of-the-art of NLP tasks have been

refreshed
Ø Parsing, Translation, …

o Some previously difficult tasks become easy
Ø Chitchat, Image caption generation

Ø morphologically-rich language translation, adaptation, …

o Some previously impossible tasks become possible
Ø Interlingua, …
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• What fundamental change has DL brought
to NLP?

• What impacts have been made by this
fundamental change?

• What is the weakness of DL in NLP?
• What is the future direction of NLP?
In this presentation, I will try to answer the
above questions, followed by the introduction
of some of our own work.
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The Changes brought by DL to NLP

Weakness of DL-based NLP
and Future Direction
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Our work on DL-based NLP
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Symbolic Discrete Spaces

4

Numerical Continuous Spaces

The spaces where NLP problems are defined
have been moved

to�from�
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www.adaptcentre.ieStatistical NLP – Symbols with Numbers

• HMM, MaxEnt, CRF, SCFG, SMT…
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www.adaptcentre.ieNeural NLP – Pure Numbers

• Word Embeddings

8 Figure extracted from Christopher Moody’s slides
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• Word Embeddings
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Figure from : https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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www.adaptcentre.ieOther Changes brought by DL to NLP

• Finer granularity
• Better generalization
• Breakdown of the boundary between modalities
• Monolithic NLP Models
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Model Granularity
Word-based SMT words

Phrase-based SMT words, phrases (grammatical & ungrammatical)

Syntax-based SMT words, (grammatical) phrases, rules

Wordnet synset
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• A NLP model must be defined in a certain granularity
• Models of different granularities are

o totally different
o not compatible with each other: PBMT and Syntactic SMT

• It’s hard to integrate knowledge of other granularities into a
model which is defined in a different granularity
o None of SMT models can translate morphologically rich languages well
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• In Neural NLP models, all linguistic units are
expressed as embeddings
o Word embeddings, sub-word em, character em
o Phrase embeddings, sentence embeedings, …

• Neural NLP models with different linguistic
granularities are similar

• It’s easy to incorporate linguistic data or
knowledge in different granularities in neural
NLP framework
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• Finer granularity
• Better generalization
• Breakdown of the boundary between modalities
• Monolithic NLP Models
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• Use Language Models (LMs) as an example
• In N-Gram LMs,

!"#$%&' () …(+ =-
#.)

+
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if “loves Mary” appears 1000 times in the training
corpus but “loves John” appears only once, they
will obtain very different bigram LM probabilities

• However, in Neural LMs, because “Mary” and “John”
are very close in the embedding space, “loves
Mary” and “loves John” will obtain very similar
NLM probabilities
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• Finer granularity
• Better generalization
• Breakdown of the boundary between modalities
• Monolithic NLP Models

17



www.adaptcentre.ieBreaking down the boundary between Modalities

• Traditionally NLP and Image/Speech processing
are very different techniques
o NLP is working on symbolic language data
o Image/Speech is working on continuous signal data

• By using NN, all language data are converted to
numerical numbers, which is in the same form
as image/speech data.

• Multimodal/cross-modal processing become
straightforward and easy to implement
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19 Figure from: https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Welcome to the VQA Challenge 2017!

http://visualqa.org/challenge.html
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• Finer granularity
• Better generalization
• Breakdown of the boundary between modalities
• Monolithic NLP Models
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• Traditionally, an complex NLP model is usually be
divided to multiple submodels, where each
submodel are trained with specific data, and
optimized against its own object function. The
submodels are connected in a certain structure,
typically a pipeline structure.
o The submodels are trained locally which may not lead

to a global optimum.
o Error propagations exist through the data flow.

• NN use monolithic models and can avoid the above
problemsè so called “end-to-end model”.
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• Makoto Nagao (Kyoto University) said: “.. when the pivot 
language [i.e. interlingua] is used, the results of the analytic 
stage must be in a form which can be utilized by all of the 
different languages into which translation is to take place. This 
level of subtlety is a practical impossibility.” (Machine Translation, 
Oxford, 1989)

• Patel-Schneider (METAL system) said: ”METAL employs a 
modified transfer approach rather than an interlingua. If a meta-
language [an interlingua] were to be used for translation 
purposes, it would need to incorporate all possible features of 
many languages. That would not only be an endless task but 
probably a fruitless one as well. Such a system would soon 
become unmanageable and perhaps collapse under its own 
weight.” (A four-valued semantics for terminological reasoning, 
Artificial Intelligence, 38, 1989)
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Our work on DL-based NLP
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• Multimodal Machine Translation
• NMT with Morphological Information
• NMT with Discourse Information
• Domain Adaptation for NMT
• Lexical Constrained Decoding for NMT
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• Human EN – a plant steem wrapping around another one.

• Human PT – caule de planta enrolando-se em outro.

• MT PT – Uma fábrica steem embalagem em torno de um outro.

Figure 1: Image extracted from
Wikipedia for which
there are human cre-
ated captions in English
and Portuguese.

Looking at the captions for Figure 1, we have some examples of
words left untranslated or out-of-vocabulary words and of words that
were incorrectly translated because they are ambiguous. For instance,
the phrase plant steem was incorrectly translated as fábrica steem. In
this case, steem is an OOV word and was left untranslated. Also,
the word wrapping was incorrectly translated as the Portuguese word
embalagem, which means wrapping in the sense of packaging, wrapping
a gift.

The English word plant is ambiguous and can be translated as both
a type of living organism, vegetation or as an industrial plant, factory.
The translated Portuguese word fábrica is closer in meaning to the
English sense of factory, industrial plant. This happens because the
translation probabilities obtained from training a baseline Statistical
Machine Translation (SMT) model (using the Europarl corpus) were
not good enough for disambiguating the English word plant and arriv-
ing at the correct Portuguese translation as in caule de planta in the
human created, reference Portuguese caption. Although the baseline
SMT system cannot translate all the ambiguous phrases properly, Fig-
ure 1 depicts a plant stem and therefore clearly contains information
that could help disambiguate ambiguous words (Calixto et al., 2012).
We will discuss Statistical Machine Translation in more detail in Sec-
tion 2.

This example illustrates the kind of problem that can take place
when translating sentences with poor contextual information or when there is a domain mismatch between
the training and test sets. We now move on to our research questions.

1.2 Research Questions

1.2.1 How to design experiments to evaluate the e↵ectiveness of the addition of multi-
modal input, namely images, into a machine translation system?

In order to answer RQ-1 we make use of experimental results by Calixto et al. (2012) that suggest that
images can be beneficial and can help disambiguate certain words in the source sentence and improve
final translation quality. To the best of our knowledge, incorporating images into MT is a novel idea
and has not been done before, despite of the MT framework being considered (SMT or NMT). For this
reason, designing an experimental setting to try to address this question requires defining some basic
points first:

(i) what is the exact problem we wish to address;

(ii) what is the input and output data our models will require;

(iii) what existing corpora/image dataset to use in our work;

(iv) what evaluation metrics to adopt.

From now on, we shall use the term corpora to refer not only to text collections in its original,
traditional meaning, but also to multilingual text collections that include images (as in (iii)). The term
image datasets and corpora are used interchangeably.

(i-ii) For addressing (i) and (ii), we envisage di↵erent ways of framing our problem, each making use
of di↵erent input data at di↵erent stages of the translation process.

First, we conjecture there are images available for training our system. This means at training stage
there are image, source sentence and target sentence. Such model can be applied and evaluated in a
typical translation scenario in which we have a test set with sentences in a source language and reference
translations, and wish to translate this source sentence into a target language. Also, we can think images
might also be available at test time, in which case we can evaluate a translation scenario where the model
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Motivation

• Human communication is multi-modal:

symbolic language + non-verbal cues;

• Images bring useful complementary

information to NLP and MT;

• Bridge the gap between MT and

image description generation.

Multi-modal Neural MT

Attention Mechanisms
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Results

Training data: M30kT

Model Training BLEU4ø METEORø TER¿ chrF3ø (prec. / rec.)

data

NMT M30kT 33.7 52.3 46.7 65.2 (67.7 / 65.0)

PBSMT M30kT 32.9 54.3
†

45.1
†

67.4 (66.5 / 67.5)

(Huang, 2016) M30kT 35.1 (ø 1.4) 52.2 (¿ 2.1) — — —

+ RCNN 36.5 (ø 2.8) 54.1 (¿ 0.2) — — —

NMTSRC+IMG M30kT 36.5
†‡

55.0
†

43.7
†‡

67.3 (66.8 / 67.4)

Improvements

NMTSRC+IMG vs. NMT ø 2.8 ø 2.7 ¿ 3.0 ø 2.1 ¿ 0.9 / ø 2.4
NMTSRC+IMG vs. PBSMT ø 3.6 ø 0.7 ¿ 1.4 ¿ 0.1 ø 0.3 / ¿ 0.1
NMTSRC+IMG vs. (Huang) ø 1.4 ø 2.8 — — —

NMTSRC+IMG vs. +RCNN ø 0.0 ø 0.9 — — —

Pre-training data: back-translated M30kC

Model Tuning BLEU4ø METEORø TER¿ chrF3ø (prec. / recall)

data

PBSMT (LM) M30kT 34.0 ø 0.0 55.0
† ø 0.0 44.7 ø 0.0 68.0 (66.8 / 68.1)

NMT M30kT 35.5
‡ ø 0.0 53.4 ø 0.0 43.3

‡ ø 0.0 65.2 (67.7 / 65.0)

NMTSRC+IMG M30kT 37.1
†‡

54.5
†‡

42.8
†‡

66.6 (67.2 / 66.5)

Improvements

NMTSRC+IMG vs. PBSMT ø 3.1 ¿ 0.5 ¿ 1.9 ¿ 1.4 ø 0.4 / ¿ 1.6
NMTSRC+IMG vs. NMT ø 1.6 ø 1.1 ¿ 0.5 ø 1.4 ¿ 0.5 / ø 1.5

Pre-training data: En-De WMT 2015

Model Tuning BLEU4ø METEORø TER¿ chrF3ø (prec. / recall)

data

PBSMT (concat) M30kT 32.6 53.9 46.1 67.3 (66.3 / 67.4)

PBSMT (LM) M30kT 32.5 54.1 46.0 67.3 (66.0 / 67.4)

NMT M30kT 37.8
† ø 0.0 56.7

† ø 0.0 41.0
† ø 0.0 69.2 (69.7 / 69.1)

NMTSRC+IMG M30kT 39.0
†‡

56.8
†‡

40.6
†‡

69.6 (69.6 / 69.6)

Improvements

NMTSRC+IMG vs. PBSMT ø 6.4 ø 2.7 ¿ 5.4 ø 2.3 ø 3.3 / ø 2.2
NMTSRC+IMG vs. NMT ø 1.2 ø 0.1 ¿ 0.4 ø 0.4 ¿ 0.1 / ø 0.5

Attention Visualisation

(a) Image–target word alignments. (b) Source–target word alignments.

Main Findings

• consistent improvements when translating

from English into German and vice-versa;

• e�ciently exploits additional data in

pre-training, e.g. back-translated and

text-only;

• visual attention learns to focus on one

important aspect of the image, and model

chooses when to use it via the image gate.

Doubly-Attentive Decoder for Multi-Modal

Neural Machine Translation

Iacer Calixto
1
, Qun Liu

1
, Nick Campbell

2

1
ADAPT Centre, School of Computing

Dublin City University, Ireland

{iacer.calixto,qun.liu}@adaptcentre.ie

2
ADAPT Centre, Speech Communication Lab

Trinity College Dublin, Ireland

nick@tcd.ie

The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme

(Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

27 Calixto, Liu & Campbell (ACL 2017)



www.adaptcentre.ieLocal Image Features

Figure 2.6: Illustration of the LeNet-5 network (Gu et al., 2015).

images, and many of them with great success (Simonyan and Zisserman, 2014; He

et al., 2015; Szegedy et al., 2015). We now introduce and discuss two important

research groups and their proposed CNNs, since we use their pre-trained models in

our work: the Oxford University group who created the VGG networks (Simonyan

and Zisserman, 2014) and the Microsoft Inc. group who put forward the Residual

Networks (He et al., 2015).

2.2.1.1 VGG Networks

Simonyan and Zisserman (2014) introduced the VGG networks and released two

pre-trained versions of their networks, the VGG16 and the VGG19. In Figure 2.7

we see an illustration of the VGG19 network architecture.

Figure 2.7: Illustration of the VGG19 network architecture.6

The VGG16 network has 16 layers and corresponds to the configuration C in

the authors original paper (Simonyan and Zisserman, 2014), whereas the VGG19

35
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Training on M30kT
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Figure 2.6: Illustration of the LeNet-5 network (Gu et al., 2015).
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Calixto and Liu (EMNLP 2017)
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Calixto and Liu (EMNLP 2017)
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• Multimodal Machine Translation
• NMT with Morphological Information
• NMT with Discourse Information
• Domain Adaptation for NMT
• Lexical Constrained Decoding for NMT
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• Chinese and English are morphologically poor
languages

• Unlike Chinese and English, a number of
languages have very rich morphology:

37

T`2@2t�KBM�iBQM +QTv

�{t2b �`2 �Hr�vb �ii�+?2/ iQ bi2Kb- bQ i?2v �`2 `272``2/ iQ �b #QmM/2/ KQ`T?2K2bX

JQ`T?QHQ;B+�HHv bBKTH2 H�M;m�;2b HBF2 1M;HBb? /Q2b MQi i2M/ iQ +QK#BM2 KQ`2 i?�M

7Qm` Q` }p2 KQ`T?2K2b- r?2`2�b KQ`T?QHQ;B+�HHv +QKTH2t H�M;m�;2b +�M 2�bBHv ?�p2

MBM2 Q` i2M KQ`T?2K2b BM � rQ`/X h?Bb T?2MQK2MQM Bb p2`v +QKKQM BM �;;HmiBM�iBp2

H�M;m�;2b bm+? �b 6�`bB Q` hm`FBb?X h�#H2 kXR b?Qrb 2t�KTH2b 7Q` i?Bb +�b2X

qQ`/ h`�MbH�iBQM
hm`FBb?,
i2`#Bv2 ;QQ/ K�MM2`b
i2`#Bv2YbBx `m/2
i2`#Bv2YbBxYHBF `m/2M2bb
i2`#Bv2YbBxYHBFYH2`B i?2B` `m/2M2bb
i2`#Bv2YbBxYHBFYH2`BYM/2M 7`QK i?2B` `m/2M2bb
i2`#Bv2YbBxYHBFYH2`BYM/2MYKBb Bi r�b #2+�mb2 Q7 i?2B` `m/2M2bb
6�`bB,
/`­K/ BM+QK2
T`Y/`­K/ r2�Hi?v
T`Y/`­K/Yi�` KQ`2 r2�Hi?v
T`Y/`­K/Yi�`YBM i?2 KQbi r2�Hi?v
T`Y/`­K/Yi�`YBMY?­ i?2 KQbi r2�Hi?v T2QTH2
T`Y/`­K/Yi�`YBMY?­Yvb?­M i?2 KQbi r2�Hi?v ;`QmT Q7 i?2K
T`Y/`­K/Yi�`YBMY?­Yvb?­MYM/ i?2v �`2 i?2 KQbi r2�Hi?v ;`QmT Q7 i?2K

h�#H2 kXR, 1t�KTH2b Q7 J*qb BM �;;HmiBM�iBp2 H�M;m�;2bX JQ`T?2K2b �`2 b2[m2M@
iB�HHv �//2/ iQ +?�M;2 i?2 7Q`K- K2�MBM;- �M/ bvMi�+iB+ `QH2 Q7 i?2 rQ`/X h?2
#QH/@7�+2/ KQ`T?2K2 Bb i?2 bi2KX

h�#H2 kXR b?Qrb i?�i BM �;;HmiBM�iBp2 H�M;m�;2b- �b � bm#b2i Q7 J_Gb- KQ`T?2K2b

+�M #2 2�bBHv bi�+F2/ iQ +QMbi`m+i +QKTH2t bi`m+im`2bX h?Bb 72�im`2 Bb � bBKTH2

BM/B+�iBQM i?�i J*qb �`2 KmHiB@H�v2` �M/ ?B2`�`+?B+�H bi`m+im`2b �M/ +�MMQi #2

i`2�i2/ �b �iQKB+ mMBibX

qQ`/ 7Q`K�iBQM Q` �{t�iBQM Bb � T`Q+2bb r?2`2#v /Bz2`2Mi KQ`T?2K2b �M/ �7@

}t2b �`2 +QK#BM2/ iQ;2i?2`X h?2`2 �`2 7Qm` ;2M2`�H r�vb Q7 BM~2+iBQM- /2`Bp�iBQM-

+QKTQmM/BM;- �M/ +HBiB+Bx�iBQM iQ +QK#BM2 /Bz2`2Mi KQ`T?2K2b UKQ`T?QHQ;B+�H QT@

2`�iBQMbVX AM BM~2+iBQM i?2 rQ`/Ƕb �TT2�`�M+2 Bb +?�M;2/ /2T2M/BM; QM i?2 +QMi2tiX

lbm�HHv i?2 M2r BM~2+i2/ rQ`/ bi�vb BM i?2 b�K2 ;`�KK�iB+�H +H�bb iQ r?B+? i?2

Q`B;BM�H rQ`/ #2HQM;b- BX2X #Qi? ǵrQ`FǶ �M/ Bib BM~2+i2/ 7Q`K rQ`F 2/ �`2 1M;HBb?

RR
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• Morphologically rich languages (MRLs) are hard

to model in SMT because (i) a single word may

have a large number of variations (>1000);

(ii) the vocabulary size is very big; (iii) the data

scarcity / OOV problem becomes severe.

• In SMT framework, although a lot of ideas have

been proposed for MRL translation, none of

them can provide a successful solution.

38
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• In NMT framework, two solutions are proposed
to deal with MRLs both of which are elegant and
obtained preliminary success:
o Character level models
o Subword level models

• Character level models are promising but also
computationally high cost

• Subword level models can reach a comprise
between performance and complexity
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• The most popular subword level model are Byte
Pair Encoding (BPE) proposed by Rico et al.
(2016)

• Google researchers used a WordPiece model in
Google NMT system

• Both BPE and WordPiece generate many
mistakes in their subword segmentation

• We proposed a novel (almost) unsupervised
model to generate better morpheme (subword)
segmentation and archived better MT quality

40
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Dynamic Programming Morpheme Segmentation
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methods
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• Multimodal Machine Translation
• NMT with Morphological Information
• NMT with Discourse Information
• Domain Adaptation for NMT
• Lexical Constrained Decoding for NMT
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• Most MT systems translate sentences separately
without considering relations between sentences
(discourse information)
o Coherence problem
o Cohesion problem
o Consistency problem

• It is very hard and complex to incorporate discourse
information into an SMT system

• A small number of work has been conducted
discourse level translation under SMT framework
but not very successful
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• We recent proposed an idea:
Exploiting Cross-Sentence Context for NMT
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Wang et al. (EMNLP 2017)
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• Multimodal Machine Translation
• NMT with Morphological Information
• NMT with Discourse Information
• Domain Adaptation for NMT
• Lexical Constrained Decoding for NMT
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• Domain Adaptation is a
common problem in MT
application scenario
where we have a large
amount of general
domain (GD) data but
only a limited amount of
in-domain (ID) data

49

ID Corpus

GD Corpus

(a) A domain-awareness scenario

Training Corpus

(b) A domain-unawareness scenario

Figure 1.3: A domain-awareness scenario vs. a domain-unawareness scenario. In a domain-
awareness scenario, the domain information is given explicitly in the training data. Furthermore,
we assume that a small amount of training data (the ID corpus) which is close to the desired do-
main is available and the training data from the other domains (the GD corpus) is large in size. In
a domain-unawareness scenario, the domain information is not given explicitly in the training data.
They may originate in tens or even hundreds of different resources without well-defined domain
labels. Therefore, we concatenate all the training data and rely on some topic-learning algorithms to
discover the domains.

the other domains – the General-Domain (GD) training data – are large in size, as seen in

Figure 1.3a. In this scenario, we are concerned with making better use of the large GD

training data to further improve the translation quality in ID.

In a domain-awareness scenario, we are aware of which parts of the training data are

the ID and which parts are the GD training data. However, this is not always true in prac-

tice (Hasler 2015). For example, the training data may come from tens or even hundreds

of different resources without well-defined domain labels to distinguish them. Therefore,

we focus on a different challenge in a domain-unawareness scenario; the domain informa-

tion is not given explicitly in the training data. However, we can treat the domains as the

latent variables in the training data and rely on well-established topic-learning algorithms,

e.g. Latent Dirichlet Allocation (LDA) (Blei et al. 2003) or Hidden Topic Markov Model

(HTMM) (Gruber et al. 2007), to discover the domain information. In this scenario, we are

concerned with making a better lexical choice and improving the overall translation quality.

Figure 1.3b is an illustration of the training data in a domain-unawareness scenario where

4
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• Many techniques have been proposed for
domain adaptation in SMT

• However in NMT domain adaptation becomes
not so difficulty: simply training an GD NMT
system on ID corpus plus ensemble seems work
well

• We proposed domain adaptation ideas for NMT
in two specific use scenarios.
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• Domain Adaptation for NMT with pre-trained
large scale word embedding
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Figure 4.6: RNNLM training with the proposed GDA operation. The shadow nodes indicate the
gating operations. For example, h1 is computed by x̂1 and ĥ0, where x̂1 is the adapted word vector
and ĥ0 is the adapted context vector. x̂1 is obtained by performing domain adaptation operation on
x1 and x

⇤
1 as seen in Equation (4.10); ĥ0 is obtained by performing domain adaptation operation on

h0 and h
⇤
0 as seen in Equation (4.12). ĥs are used to map to the size of vocabulary for the softmax

function.

should be consistent. Another practical reason for not updating the pre-trained GD word

vector model is that fewer parameters need to be optimized in the network. In general,

models with fewer parameters can make training converge faster.

4.3 Language Models and SMT Reranking Experiments

To demonstrate that the proposed approach can be successfully applied in different sequence-

to-sequence prediction tasks, we use neural LM experiment in this section and NMT exper-

iment in the next section.

4.3.1 Experimental Setup

Recall that the setting of the domain-awareness scenario is a small amount of ID training

data and a significant amount of GD training data. In our first set of experiments, we thus

choose to use the widely known Penn Treebank (Marcus et al. 1993) portion of the Wall

Street Journal corpus as the ID domain training data,12 and the pre-trained word vector
1We download the data from http://www.fit.vutbr.cz/˜imikolov/rnnlm/

simple-examples.tgz
2The most widely used data sets for evaluating performance of LMs.
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Validation Set Test Set

Baselines

Baseline (KN5) 148.007 141.186
Baseline (word2vec) 121.871 117.730
Baseline (Standard) 92.983 89.295
Adaptation on Word Representations

WVC 95.149 91.414
WVS 88.398 85.231
Adaptation on Context Representations

CVC 90.337 86.168
WCVC 88.551 85.067
CVS 88.244 84.721
WCVS 90.293 86.679
Gated Adaptation

WVG 90.937 87.853
CVG 90.301 86.832
DAGRU 86.247 81.900

Table 2: LM perplexity on Penn Treebank corpus.

Sentences Tokens

Training 181,108 4,691k
Validation 3,000 64k
Test 3,003 71k

Table 3: Statistics of the News corpus.

pre-trained word2vec model as the embedding layer. It can achieve 121.871 and 117.730 perplexities on
the validation and test data set, respectively. The baseline (Standard) model is a neural LM, which is
trained only on the ID data, it can achieve 92.983 and 89.295 perplexities on the validation and test data
set, respectively. For the baseline (word2vec) model, we observe a sudden explosion in the evaluation
perplexity. We experimentally set the learning rate with a decay factor of 0.5 after 4 iterations.

In the adaptation on word representations experiments, we found that summing up the word vectors
in WVS can outperform the concatenation approach of WVC. Adding up the context representations in
CVS is also more useful than concatenating the context representations in CVC. Thus, we can draw the
conclusion that information from GD should be compressed (summed) into ID rather than using scat-
tered (concatenated) representations. However, weighted vectors can be harmful to the sum approaches
in WCVS. We think this is because the adapted representation is a newly computed vector after the sum
operation, where the weight vectors are hidden behind the sum operation. Thus the model can be hard to
optimize. In contrast, when applying weight vectors in the concatenation cases in WCVC, the adapted
representation is still separable into domains. Thus the weights in the adapted model are easy to opti-
mize. However, observing the experimental results, only a small positive impact can be observed when
applying weighted vectors to the concatenation approaches. For example, approximately 1 perplexity
point difference can be found between CVC and WCVC models. This indicates that the approach of
using weight vectors for domain adaptation in neural network training is too simple.

We now move our focus to the News corpus. We test the DAGRU adaptation approach on the target
side of the French-to-English News Commentary v10 corpus from the WMT2015 translation task. We
use corpus newstest 2013 for evaluation and newstest 2014 for testing the trained LMs. More detailed
data statistics are summarized in Table 3. Table 4 presents the LM perplexity differences between the
baseline LM and the adapted LM. On the News training corpus, the adapted LM can also produce a better
result than the baseline LM with a perplexity reduction of 12.

4.2 Statistical Machine Translation Re-ranking

In this experiment, we apply the DAGRU-adapted LMs trained in Table 4 on the statistical machine
translation (SMT) n-best re-ranking task. We use the French-to-English News Commentary v10 and
Europarl v7 corpus from the WMT2015 translation task to train our baseline SMT system. The newstest
2013 and 2014 data sets are used for tuning and testing for the SMT, respectively. The SMT baseline
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System NIST 2002 NIST 2004 NIST 2005
PBSMT 33.42 32.36 30.11
NMT 34.51 35.02 31.46
GDA NMT (glove 840b) 36.07 35.99‡ 31.73
GDA NMT (word2vec) 35.63 35.84‡ 31.88‡

Table 4.8: BLEU scores for NMT adaptation. We use ‡ to indicate statistically significant (Koehn
2004) improvements upon the NMT baseline model. The significance testing uses bootstrapping
method at the p = 0.01 level with 1,000 iterations.

model based on the BLEU score of the development data. The adapted NMT system uses

the same settings as our second baseline, except that the target word vector is adapted from

the GD word vector model using GDA. We demonstrate the performance of GDA using the

two large pre-trained word vector models, glove 840b and word2vec.

4.4.2 Results

Table 4.8 presents the experiment results when GDA is applied to NMT. We use ‡ to in-

dicate statistically significant (Koehn 2004) improvements over the NMT baseline model.

The significance testing uses bootstrapping method at the level p = 0.01 level with 1,000

iterations. PBSMT and NMT achieve 33.42 and 34.51 BLEU scores, respectively, on the

NIST 2002 development data, whereas GDA NMT obtains 36.07 and 35.63 BLEU scores,

respectively, on the NIST 2002 development data. If we look at the results on the test set,

there is no surprise that the baseline NMT can bring 2.66 (absolute, 8.2% relative) and 1.35

(absolute, 4.5% relative) improvements compared to the PBSMT system. When employ-

ing GDA in NMT training, we can gain 0.97 (absolute, 2.7% relative) and 0.82 (absolute,

2.3% relative) improvements on the NIST 2004 test data using glove 840b and word2vec

vector models, respectively. We also can observe BLEU score increases on the NIST 2015

test data, where 0.27 (absolute, 0.9% relative) and 0.42 (absolute, 1.3% relative) increase

are gained with glove 840b and word2vec vector models, respectively. This set of experi-

ments suggests that the proposed GDA approach can be applied not only to the LM task,

but also to the NMT task. Comparing the adaptations from glove 840b and word2vec, the

two systems provide comparable results, where no significant differences can be observed.
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• Topic-Informed Neural Machine Translation
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Figure 2: A graphical illustration of the proposed topic-informed NMT model, with 4 input words and 4 output words. The
shaded units indicate the topic information used in the encoder and decoder. In order to distinguish the hidden states in the
encoder-decoder architecture, we use hS and hT to represent the hidden states of the encoder and decoder, respectively, e.g.
hS
1 indicates the encoder hidden state at time 1. Furthermore, in order to keep the notation consistent with Section 4.1, e.g. �S

i

denotes the word distributions over topics for the source word at position i, a similar notation is also used for the target words.
For example, �T

1 indicates the word distributions over topics for the target word at position 1.

4.1 Topic-Informed Encoder

The encoder in standard NMT uses only word embedding to compute the source context vector. By
using topic information on the source side, the decoder can have an overview of the source topics during
decoding. Furthermore, the attention model can implicitly pay attention to the topic distributions of each
source word. Topic information on the source side can be helpful to generate more accurate translations.
Therefore, we first compute the topic distributions (word distributions over topics) for each source word
of the input sentence. We then concatenate the topic distributions with each corresponding hidden state
of the input source words. Finally, the hidden states with the topic information are used to compute the
topic-informed source context vector topic cj , as in Equation (7):

topic cj =
mX

i=1

↵ij [hi,�
S
i ] (7)

to obtain our topic-informed encoder, where �S
i denotes the word distributions over topics for each

source word in S, and [hi,�S
i ] denotes the concatenation operation on the corresponding hi and �S

i .
Thus, Equation (3) is updated as in (8):

hj = g(tj�1, hj�1, topic cj) (8)

in order to obtain the source topic-informed NMT model.

4.2 Topic-Informed Decoder

While the source topic-informed NMT model is useful for generating accurate translations, introducing
topic information on the target side can help topic consistency between target words. A natural choice
for maintaining this topic consistency is to use the same architecture as the decoder (i.e. GRU), to obtain
the topic hidden state for the corresponding target word. We use h�

T

j�1 to represent the hidden state of
target topics for time j � 1. We then can update Equation (3) as in (9):

hj = g(tj�1, hj�1, c, h
�T

j�1) (9)
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Systems NIST 2002 (dev) NIST 2004 (test) NIST 2005 (test)

SMT 33.42 32.36 30.11
NMT 34.33 34.76 31.12

Source Topic-Informed NMT (40) 35.39 35.17† 31.95‡
Target Topic-Informed NMT (10) 36.31 35.43‡ 32.50‡

Topic-Informed NMT (40,10) 34.86 35.91‡ 32.79‡

Table 2: BLEU scores of the trained SMT and NMT models. We use ‡ and † to indicate significant (Koehn, 2004) improve-
ments upon the baseline NMT using bootstrapping method at the level p = 0.01 and p = 0.05 level, respectively (with 1000
iterations).
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Figure 3: Topic numbers vs. translation BLEU scores on the NIST 2002 development dataset.

and the models are saved at each 1,000 updates. The training takes approximately 3 days on an NVIDIA
GeForce GTX TITAN X GM200 GPU machine. We then choose the final model based on the BLEU4

(Papineni et al., 2002) score on the development data.

5.2 Results

Table 2 presents the experiment results on the development and test data. In Table 2, the number
next to each topic-informed NMT system indicates the number of topics used in the system, i.e. we
use 40 source topics in the source topic-informed NMT system, and 10 target topics in the target
topic-informed NMT model. The source and target topic numbers are experimentally chosen from
{10, 20, 30, 40, 50, 80, 100, 150} according to the development BLEU scores, as seen in Figure 3. We
then leverage topic information on both source (with 40 topics) and target (with 10 topics) sides, which
produces the topic-informed system (40,10) in Table 2. We think that the source topic number and the
target topic number are not necessarily to be the same as the topic distributions are used differently in
the proposed NMT model. The source topic distribution is appended to each word in the encoder, and
the target distribution is passed via the RNN in the decoder.

We first compare the system performance on the development data. According to Table 2, using
topic information can improve system performance over the two baseline systems. The source topic-
informed NMT (40) system can gain absolute improvements of 1.97 (5.8% relative) and 1.06 (3.1%
relative) BLEU scores compared to the SMT and NMT baseline systems, respectively. When using the
topic information on the target side, we can observe absolute BLEU score improvements of 2.89 (8.6%
relative) and 1.98 (5.8% relative) compared to the SMT and NMT baseline systems, respectively, which
is the best-performed system on the development data. The topic-informed NMT (40, 10) system can
only gain absolute 0.53 (1.5% relative) and 1.44 (4.3% relative) improvements compared to the SMT and
NMT baseline systems, respectively.

In Table 2, significant improvements can be observed on the test data. There is a gain of 0.41 (absolute,
1.8% relative) and 0.83 (absolute, 2.7% relative) BLEU scores compared with the NMT baseline systems
when the topic information is employed on the source side, on the NIST 2004 and NIST 2005 data sets,

4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Baseline NMT Topic-Informed NMT

NIST 2004 2.3% 1.9%
NIST 2005 2.7% 2.3%

Table 3: The percentage of UNK tokens produced in translation outputs by baseline NMT and topic-informed NMT systems.

same topic in which UNK appears, the UNK token will have less chance to be chosen as the translation
output. Therefore, other word choices than UNK can be made and the overall UNK number is reduced.
Inspecting the translation examples in Figure 5, Æ�/speaker and ;√/active fail to be translated by
the baseline NMT system. However, topic-informed NMT is able to use the known topic information,
either from the source sentences or previous translations, to produce correct translations. For example,
the source wordsÆ�/speaker and;√/active are translated into speaker and active, respectively. The
source worda⌦æ/Qaida does not appear in the parallel training data, so both systems produce UNK

in this case.

Figure 6 compares the word alignments produced by the two systems. In this example, we can find
that the word alignments of topic-informed NMT can give more weights (↵ij in Equation (6)) to the
correct aligned words, which consequently indicates to the decoder to pay more attentions on the correct
source works to translate.
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Figure 6: The comparison of alignments generated without (left) and with (right) topic knowledge. The example is chosen
from the development data, where the x-axis sentence is the source training sentence (Chinese), and the y-axis sentence is the
target training sentence (English). In the heatmap, we use grayscale colour schemes, where black means the word alignment
probability is low, and white means the word alignment probability is high.

Our baseline NMT system contains 58,427,521 parameters to learn. Since we concatenate the source
topic information and use a GRU network to store the target topic information, the topic-informed NMT
system contains 817,984 more parameters to learn. During our experiments, we see that all of the trained
NMT models (baseline NMT and topic-informed NMT systems listed in Table 2) produce their best-
performing models between 280,000 and 320,000 in terms of update numbers. The baseline NMT and
the topic-informed NMT systems require 284,000 and 289,000 updates to learn the best-performing
models on the development data, respectively.
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• Multimodal Machine Translation
• NMT with Morphological Information
• NMT with Discourse Information
• Domain Adaptation for NMT
• Lexical Constrained Decoding for NMT
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• In some scenario, we expect the MT system to
generate translations with specific constraints:
o Term translation
o Pick-Revise-Translation loop for post-editing

• It is quite complex to implement this idea in
SMT

• We proposed a simple and effective approach to
implement this in NMT framework
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Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
Hokamp & Liu (ACL 2017)
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ITERATION 0 1 2 3
Strict Constraints
EN-DE 18.44 27.64 (+9.20) 36.66 (+9.01) 43.92 (+7.26)
EN-FR 28.07 36.71 (+8.64) 44.84 (+8.13) 45.48 +(0.63)
EN-PT* 15.41 23.54 (+8.25) 31.14 (+7.60) 35.89 (+4.75)
Relaxed Constraints
EN-DE 18.44 26.43 (+7.98) 34.48 (+8.04) 41.82 (+7.34)
EN-FR 28.07 33.8 (+5.72) 40.33 (+6.53) 47.0 (+6.67)
EN-PT* 15.41 23.22 (+7.80) 33.82 (+10.6) 40.75 (+6.93)

Table 1: Results for four simulated editing cycles using WMT test data. EN-DE uses newstest2013, EN-FR uses newstest2014,
and EN-PT uses the Autodesk corpus discussed in Section 4.2. Improvement in BLEU score over the previous cycle is shown
in parentheses. * indicates use of our test corpus created from Autodesk post-editing data.

with the original translation hypothesis, a (sim-
ulated) user first picks a part of the hypothesis
which is incorrect, and then provides the correct
translation for that portion of the output. The user-
provided correction is then used as a constraint for
the next decoding cycle. The Pick-Revise process
can be repeated as many times as necessary, with
a new constraint being added at each cycle.

We modify the experiments of Cheng et al.
(2016) slightly, and assume that the user only pro-
vides sequences of up to three words which are
missing from the hypothesis.4 To simulate user
interaction, at each iteration we chose a phrase
of up to three tokens from the reference transla-
tion which does not appear in the current MT hy-
potheses. In the strict setting, the complete phrase
must be missing from the hypothesis. In the re-

laxed setting, only the first word must be missing.
Table 1 shows results for a simulated editing ses-
sion with four cycles. When a three-token phrase
cannot be found, we backoff to two-token phrases,
then to single tokens as constraints. If a hypoth-
esis already matches the reference, no constraints
are added. By specifying a new constraint of up to
three words at each cycle, an increase of over 20
BLEU points is achieved in all language pairs.

4.2 Domain Adaptation via Terminology

The requirement for use of domain-specific termi-
nologies is common in real-world applications of
MT (Crego et al., 2016). Existing approaches in-
corporate placeholder tokens into NMT systems,
which requires modifying the pre- and post- pro-
cessing of the data, and training the system with

4NMT models do not use explicit alignment between
source and target, so we cannot use alignment information
to map target phrases to source phrases

data that contains the same placeholders which oc-
cur in the test data (Crego et al., 2016). The MT
system also loses any possibility to model the to-
kens in the terminology, since they are represented
by abstract tokens such as “hTERM 1i”. An at-
tractive alternative is to simply provide term map-
pings as constraints, allowing any existing system
to adapt to the terminology used in a new test do-
main.

For the target domain data, we use the Autodesk
Post-Editing corpus (Zhechev, 2012), which is a
dataset collected from actual MT post-editing ses-
sions. The corpus is focused upon software local-
ization, a domain which is likely to be very dif-
ferent from the WMT data used to train our gen-
eral domain models. We divide the corpus into ap-
proximately 100,000 training sentences, and 1000
test segments, and automatically generate a termi-
nology by computing the Pointwise Mutual Infor-
mation (PMI) (Church and Hanks, 1990) between
source and target n-grams in the training set. We
extract all n-grams from length 2-5 as terminology
candidates.

pmi(x;y) = log
p(x, y)

p(x)p(y)
(5)

npmi(x;y) =
pmi(x;y)

h(x,y)
(6)

Equations 5 and 6 show how we compute the
normalized PMI for a terminology candidate pair.
The PMI score is normalized to the range [�1,+1]
by dividing by the entropy h of the joint prob-
ability p(x,y). We then filter the candidates to
only include pairs whose PMI is � 0.9, and where
both the source and target phrases occur at least
five times in the corpus. When source phrases
that match the terminology are observed in the test

1540
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data, the corresponding target phrase is added to
the constraints for that segment. Results are shown
in Table 2.

As a sanity check that improvements in BLEU
are not merely due to the presence of the terms
somewhere in the output, i.e. that the placement

of the terms by GBS is reasonable, we also eval-
uate the results of randomly inserting terms into
the baseline output, and of prepending terms to the
baseline output.

This simple method of domain adaptation leads
to a significant improvement in the BLEU score
without any human intervention. Surprisingly,
even an automatically created terminology com-
bined with GBS yields performance improve-
ments of approximately +2 BLEU points for En-
De and En-Fr, and a gain of almost 14 points
for En-Pt. The large improvement for En-Pt is
probably due to the training data for this sys-
tem being very different from the IT domain
(see Appendix). Given the performance improve-
ments from our automatically extracted terminol-
ogy, manually created domain terminologies with
good coverage of the test domain are likely to lead
to even greater gains. Using a terminology with
GBS is likely to be beneficial in any setting where
the test domain is significantly different from the
domain of the model’s original training data.

System BLEU
EN-DE
Baseline 26.17
Random 25.18 (-0.99)
Beginning 26.44 (+0.26)
GBS 27.99 (+1.82)
EN-FR
Baseline 32.45
Random 31.48 (-0.97)
Beginning 34.51 (+2.05)
GBS 35.05 (+2.59)
EN-PT
Baseline 15.41
Random 18.26 (+2.85)
Beginning 20.43 (+5.02)
GBS 29.15 (+13.73)

Table 2: BLEU Results for EN-DE, EN-FR, and EN-PT ter-
minology experiments using the Autodesk Post-Editing Cor-
pus. ”Random’ indicates inserting terminology constraints
at random positions in the baseline translation. ”Beginning”
indicates prepending constraints to baseline translations.

4.3 Analysis
Subjective analysis of decoder output shows that
phrases added as constraints are not only placed
correctly within the output sequence, but also have
global effects upon translation quality. This is a
desirable effect for user interaction, since it im-
plies that users can bootstrap quality by adding the
most critical constraints (i.e. those that are most
essential to the output), first. Table 3 shows several
examples from the experiments in Table 1, where
the addition of lexical constraints was able to
guide our NMT systems away from initially quite
low-scoring hypotheses to outputs which perfectly
match the reference translations.

5 Related Work

Most related work to date has presented modifica-
tions of SMT systems for specific usecases which
constrain MT output via auxilliary inputs. The
largest body of work considers Interactive Ma-
chine Translation (IMT): an MT system searches
for the optimal target-language suffix given a com-
plete source sentence and a desired prefix for
the target output (Foster, 2002; Barrachina et al.,
2009; Green, 2014). IMT can be viewed as sub-
case of constrained decoding, where there is only
one constraint which is guaranteed to be placed at
the beginning of the output sequence. Wuebker
et al. (2016) introduce prefix-decoding, which
modifies the SMT beam search to first ensure that
the target prefix is covered, and only then contin-
ues to build hypotheses for the suffix using beams
organized by coverage of the remaining phrases
in the source segment. Wuebker et al. (2016) and
Knowles and Koehn (2016) also present a simple
modification of NMT models for IMT, enabling
models to predict suffixes for user-supplied pre-
fixes.

Recently, some attention has also been given to
SMT decoding with multiple lexical constraints.
The Pick-Revise (PRIMT) (Cheng et al., 2016)
framework for Interactive Post Editing introduces
the concept of edit cycles. Translators specify con-
straints by editing a part of the MT output that is
incorrect, and then asking the system for a new
hypothesis, which must contain the user-provided
correction. This process is repeated, maintain-
ing constraints from previous iterations and adding
new ones as needed. Importantly, their approach
relies upon the phrase segmentation provided by
the SMT system. The decoding algorithm can
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www.adaptcentre.ieWeakness of DL-based NLP and Future Direction

• DL has totally changed the face of NLP research
and provide powerful driving force for NLP

• In my personal opinion, DL-based NLP still has
huge potential and is far from its plateau

• Weakness of DL-based NLP is also obvious:
o Does not work with small data
o Unawareness of semantic:

Ø Most NLP system has no idea of what the language is
talking about

Ø There is no general techniques for task-oriented NLP
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• Future direction:
o Apply more powerful DL technologies to solve NLP
tasks
Ø Reinforcement Learning
Ø Adversarial Learning

o General technologies to incorporate human
knowledge to DL-based NLP

o General technologies to incorporate semantics into
DL-based NLP
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